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Figure 1: Our method, BakedSDF, optimizes a neural surface-volume representation of a complex real-world scenes and (a)
“bakes“ that representation into a high-resolution mesh. These meshes (b) can be rendered in real time on commodity hardware,
and support other applications such as (c) separating material components, (d) appearance editing with accurate cast shadows,
and (e) physics simulation for inserted objects. Interactive demo at https://bakedsdf.github.io/.

ABSTRACT
We present a method for reconstructing high-quality meshes of
large unbounded real-world scenes suitable for photorealistic novel
view synthesis. We first optimize a hybrid neural volume-surface
scene representation designed to have well-behaved level sets that
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correspond to surfaces in the scene. We then bake this represen-
tation into a high-quality triangle mesh, which we equip with a
simple and fast view-dependent appearance model based on spheri-
cal Gaussians. Finally, we optimize this baked representation to best
reproduce the captured viewpoints, resulting in a model that can
leverage accelerated polygon rasterization pipelines for real-time
view synthesis on commodity hardware. Our approach outperforms
previous scene representations for real-time rendering in terms of
accuracy, speed, and power consumption, and produces high qual-
ity meshes that enable applications such as appearance editing and
physical simulation.
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1 INTRODUCTION
Current top-performing approaches for novel view synthesis — the
task of using captured images to recover a 3D representation that
can be rendered from unobserved viewpoints — are largely based on
Neural Radiance Fields (NeRF) [Mildenhall et al. 2020]. By represent-
ing a scene as a continuous volumetric function parameterized by a
multilayer perceptron (MLP), NeRF is able to produce photorealistic
renderings that exhibit detailed geometry and view-dependent ef-
fects. Because the MLP underlying a NeRF is expensive to evaluate
and must be queried hundreds of times per pixel, rendering a high
resolution image from a NeRF is typically slow.

Recent work has improved NeRF rendering performance by trad-
ing compute-heavyMLPs for discretized volumetric representations
such as voxel grids. However, these approaches require substan-
tial GPU memory and custom volumetric raymarching code and
are not amenable to real-time rendering on commodity hardware,
since modern graphics hardware and software is oriented towards
rendering polygonal surfaces rather than volumetric fields.

While current NeRF-like approaches are able to recover high-
quality real-time-renderable meshes of individual objects with sim-
ple geometry [Boss et al. 2022], reconstructing detailed and well-
behaved meshes from captures of real-world unbounded scenes
(such as the “360 degree captures” of Barron et al. [2022]) has proven
to be more difficult. Recently, MobileNeRF [Chen et al. 2022a] ad-
dressed this problem by training a NeRF whose volumetric content
is restricted to lie on the faces of a polygon mesh, then baking
that NeRF into a texture map. Though this approach yields reason-
able image quality, MobileNeRF initializes the scene geometry as a
collection of axis-aligned tiles that turns into a textured polygon
“soup” after optimization. The resulting geometry is less suitable for
common graphics applications such as texture editing, relighting,
and physical simulation.

In this work, we demonstrate how to extract high-quality meshes
from a NeRF-like neural volumetric representation. Our system,
which we call BakedSDF, extends the hybrid volume-surface neural
representation of VolSDF [Yariv et al. 2021] to represent unbounded
real-world scenes. This representation is designed to have a well-
behaved zero level set corresponding to surfaces in the scene, which
lets us extract high-resolution triangle meshes using marching
cubes.

Our key idea is to define the SDF in contracted coordinate space [Bar-
ron et al. 2022], as it has these advantages: It more strongly regu-
larizes distant content, and it allows us to also extract the mesh in

contracted space which distributes the triangle budget better (more
in the center, fewer in the periphery).

We then equip this mesh with a fast and efficient view-dependent
appearancemodel based on spherical Gaussians, which is fine-tuned
to reproduce the input images of the scene. The output of our system
can be rendered at real-time frame rates on commodity devices,
and we show that our real-time rendering system outperforms
prior work in terms of realism, speed, and power consumption.
Additionally we show that (unlike comparable prior work) the
mesh produced by our model is accurate and detailed, enabling
standard graphics applications such as appearance editing and
physics simulation.

To summarize, our key contributions are:

(1) High-quality neural surface reconstruction of unbounded
real-world scenes,

(2) a framework for real-time rendering of these scenes in a
browser, and

(3) we demonstrate that spherical Gaussians are a practical
representation of view-dependence appearance for view-
synthesis.

2 RELATEDWORK
View synthesis, i.e., the task of rendering novel views of a scene
given a set of captured images, is a longstanding problem in the
fields of computer vision and graphics. In scenarios where the ob-
served viewpoints are sampled densely, synthesizing new views can
be done with light field rendering — straightforward interpolation
into the set of observed rays [Gortler et al. 1996; Levoy and Han-
rahan 1996]. However, in practical settings where observed view-
points are captured more sparsely, reconstructing a 3D representa-
tion of the scene is crucial for rendering convincing novel views.
Most classical approaches for view synthesis use triangle meshes
(typically reconstructed using a pipeline consisting of multi-view
stereo [Furukawa and Hernández 2015; Schönberger et al. 2016],
Poisson surface reconstruction [Kazhdan et al. 2006; Kazhdan and
Hoppe 2013], and marching cubes [Lorensen and Cline 1987]) as the
underlying 3D scene representation, and render novel views by re-
projecting observed images into each novel viewpoint and blending
them together using either heuristically-defined [Buehler et al. 2001;
Debevec et al. 1996; Wood et al. 2000] or learned [Hedman et al.
2018; Riegler and Koltun 2020, 2021] blending weights. Although
mesh-based representations are well-suited for real-time rendering
with accelerated graphics pipelines, the meshes produced by these
approaches tend to have inaccurate geometry in regions with fine
details or complex materials, which leads to errors in rendered
novel views. Alternatively, point-based representations [Kopanas
et al. 2021; Rückert et al. 2022] are better suited for modeling thin
geometry, but cannot be rendered efficiently without visible cracks
or unstable results when the camera moves.

Most recent approaches to view synthesis sidestep the difficulty
of high-quality mesh reconstruction by using volumetric represen-
tations of geometry and appearance, such as voxel grids [Lombardi
et al. 2019; Penner and Zhang 2017; Szeliski and Golland 1999; Vo-
giatzis et al. 2007] or multiplane images [Srinivasan et al. 2019;
Wizadwongsa et al. 2021; Zhou et al. 2018]. These representations
arewell-suited to gradient-based optimization of a rendering loss, so
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they can be effectively optimized to reconstruct detailed geometry
seen in the input images. The most successful of these volumet-
ric approaches is Neural Radiance Fields (NeRF) [Mildenhall et al.
2020], which forms the basis for many state-of-the-art view synthe-
sis methods (see Tewari et al. [2022] for a review). NeRF represents
a scene as a continuous volumetric field of matter that emits and
absorbs light, and renders an image using volumetric ray-tracing.
NeRF uses an MLP to map from a spatial coordinate to a volumetric
density and emitted radiance, and that MLP must be evaluated at a
set of sampled coordinates along a ray to yield a final color.

Subsequent works have proposed modifying NeRF’s representa-
tion of scene geometry and appearance for improved quality and
editability. Ref-NeRF [Verbin et al. 2022] reparameterizes NeRF’s
view-dependent appearance to enable appearance editing and im-
prove the reconstruction and rendering of specular materials. Other
works [Boss et al. 2021; Kuang et al. 2022; Srinivasan et al. 2021;
Zhang et al. 2021a,b] attempt to decompose a scene’s view-dependent
appearance into material and lighting properties. In addition to
modifying NeRF’s representation of appearance, papers includ-
ing UNISURF [Oechsle et al. 2021], VolSDF [Yariv et al. 2021],
NeuS [Wang et al. 2021], MetaNLR++ [Bergman et al. 2021], and
NeuMesh [Bao and Yang et al. 2022] augment NeRF’s fully-volumetric
representation with hybrid volume-surface models, but do not
target real-time rendering and show results only for objects and
bounded scenes.

The MLP NeRF uses to represent a scene is usually large and
expensive to evaluate, and this means that a NeRF is slow to train
(hours or days per scene) and slow to render (seconds or minutes
per megapixel). While rendering can be accelerated with a sampling
network that reduces the MLP queries per ray [Neff et al. 2021],
recent methods have improved both training and render time by
replacing the large MLP with a voxel grid [Karnewar et al. 2022; Sun
et al. 2022], a grid of small MLPs [Reiser et al. 2021], low-rank [Chen
et al. 2022b] or sparse [Yu et al. 2022] grid representations, or a
multiscale hash encoding with a small MLP [Müller et al. 2022].

While these representations reduce the computation required
for both training and rendering (at the cost of increased storage),
rendering can be further accelerated by precomputing and storing,
i.e., “baking”, a trained NeRF into a more efficient representation.
SNeRG [Hedman et al. 2021], FastNeRF [Garbin et al. 2021], Plenoc-
trees [Yu et al. 2021], and Scalable Neural Indoor Scene Render-
ing [Wu et al. 2022] all bake trained NeRFs into sparse volumetric
structures and use simplified models of view-dependent appearance
to avoid evaluating an MLP at each sample along each ray. These
methods have enabled real-time rendering of NeRFs on high-end
hardware, but their use of volumetric raymarching precludes real-
time performance on commodity hardware. Concurrent to ourwork,
Reiser et al. [2023] developed Memory-Efficient Radiance Fields
(MERF), a compressed representation volumetric for unbounded
scenes that facilitates fast rendering on commodity hardware.When
compared with our meshes, this volumetric representation achieves
higher quality scores, but requires more memory, needs a complex
renderer, and is not straightforward to use for downstream graphics
applications such as physics simulation. Please refer to the MERF
paper for a direct comparison with our method.

3 PRELIMINARIES
In this section, we describe the neural volumetric representation
that NeRF [Mildenhall et al. 2020] uses for view synthesis as well
as improvements introduced by mip-NeRF 360 [Barron et al. 2022]
for representing unbounded “360 degree” scenes.

A NeRF is a 3D scene representation consisting of a learned
function that maps a position x and outgoing ray direction d to a
volumetric density 𝜏 and color c. To render the color of a single pixel
in a target camera view, we first compute the ray corresponding
to that pixel r = o + 𝑡d, and then evaluate the NeRF at a series of
points {𝑡𝑖 } along the ray. The resulting outputs 𝜏𝑖 , c𝑖 at each point
are composited together into a single output color value C:

C =
∑︁
𝑖

exp ©­«−
∑︁
𝑗<𝑖

𝜏 𝑗𝛿 𝑗
ª®¬ (1 − exp (−𝜏𝑖𝛿𝑖 )) c𝑖 , 𝛿𝑖 = 𝑡𝑖 −𝑡𝑖−1 . (1)

This definition of C is a quadrature-based approximation of the
volume rendering equation [Max 1995].

NeRF parametrizes this learned function using an MLP whose
weights are optimized to implicitly encode the geometry and color
of the scene: A set of training input images and their camera poses
are converted into a set of (ray, color) pairs, and gradient descent
is used to optimize the MLP weights such that the rendering of
each ray resembles its corresponding input color. Formally, NeRF
minimizes a loss between the ground truth color Cgt and the color
C produced in Equation 1, averaged over all training rays:

Ldata = E
[

C − Cgt



2] . (2)

If the input images provide sufficient coverage of the scene (in
terms of multiview 3D constraints), this simple process yields a set
of MLP weights that accurately describe the scene’s 3D volumetric
density and appearance.

Mip-NeRF 360 [Barron et al. 2022] extends the basic NeRF for-
mulation to reconstruct and render real-world “360 degree” scenes
where cameras can observe unbounded scene content in all direc-
tions. Two improvements introduced in mip-NeRF 360 are the use
of a contraction function and a proposal MLP. The contraction
function maps unbounded scene points in R3 to a bounded domain:

contract(x) =
{
x ∥x∥ ≤ 1(
2 − 1

∥x∥

)
x
∥x∥ ∥x∥ > 1

, (3)

which produces contracted coordinates that are well-suited to be
positionally encoded as inputs to the MLP. Additionally, mip-NeRF
360 showed that large unbounded scenes with detailed geometry
require prohibitively large MLPs and many more samples along
each ray than is tractable in the original NeRF framework. Mip-
NeRF 360 therefore introduced a proposal MLP: a much smaller
MLP that is trained to bound the density of the actual NeRF MLP.
This proposal MLP is used in a hierarchical sampling procedure
that efficiently generates a set of input samples for the NeRF MLP
that are tightly focused around non-empty content in the scene.

4 METHOD
Our method is composed of three stages, which are visualized in
Figure 2. First we optimize a surface-based representation of the
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Figure 2: An illustration of the three stages of ourmethod.We
first reconstruct the scene using a surface-based volumetric
representation (Section 4.1), then bake it into a high-quality
mesh (Section 4.2), and finally optimize a view-dependent
appearance model based on spherical Gaussians (Section 4.3).

geometry and appearance of a scene using NeRF-like volume ren-
dering. Then, we “bake” that geometry into a mesh, which we show
is accurate enough to support convincing appearance editing and
physics simulation. Finally, we train a new appearance model that
uses spherical Gaussians (SGs) embedded within each vertex of the
mesh, which replaces the expensive NeRF-like appearance model
from the first step. The resulting 3D representation that results from
this approach can be rendered in real-time on commodity devices,
as rendering simply requires rasterizing a mesh and querying a
small number of spherical Gaussians.

4.1 Modeling density with an SDF
Our representation combines the benefits of mip-NeRF 360 for repre-
senting unbounded scenes with the well-behaved surface properties
of VolSDF’s hybrid volume-surface representation [Yariv et al. 2021].
VolSDF models volumetric density of the scene as a parametric func-
tion of an MLP-parameterized signed distance function (SDF) 𝑓
that returns the signed distance 𝑓 (x) from each point x ∈ R3 to
the surface. Because our focus is reconstructing unbounded real-
world scenes, we parameterize 𝑓 in contracted space (Equation 3)
rather than world-space. The underlying surface of the scene is the
zero-level set of 𝑓 , i.e., the set of points at distance zero from the
surface:

S = {x : 𝑓 (x) = 0} . (4)
Following VolSDF, we define the volume density 𝜏 as:

𝜏 (x) = 𝛼Ψ𝛽 (𝑓 (x)) , (5)

where Ψ𝛽 is the cumulative distribution function of a zero-mean
Laplace distribution with scale parameter 𝛽 > 0. Note that as 𝛽
approaches 0, the volumetric density approaches a function that
returns 𝛼 inside any object and 0 in free space. To encourage 𝑓 to
approximate a valid signed distance function (i.e. one where 𝑓 (x)
returns the signed Euclidean distance to the level set of 𝑓 for all x),
we penalize the deviation of 𝑓 from satisfying the Eikonal equation
[Gropp et al. 2020]:

LSDF = Ex
[
(∥∇𝑓 (x)∥ − 1)2

]
. (6)

Note that as 𝑓 is defined in contracted space, this constraint also
operates on contracted space.

Recently, Ref-NeRF [Verbin et al. 2022] improved view-dependent
appearance by parameterizing it as a function of the view direction
reflected about the surface normal. Our use of an SDF-parameterized

density allows this to be easily adopted as SDFs have well-defined
surface normals: n(x) = ∇𝑓 (x)/∥∇𝑓 (x)∥. Therefore, when training
this stage of our model we adopt Ref-NeRF’s appearance model
and compute color using separate diffuse and specular components,
where the specular component is parameterized by the concate-
nation of the view direction reflected about the normal direction,
the dot product between the normal and view direction, and a 256
element bottleneck vector output by the MLP that parametrizes 𝑓 .

We use a variant of mip-NeRF 360 as our model (see Appendix A
in supplementary material for specific training details). Similarly
to VolSDF [Yariv et al. 2021], we parameterize the density scale
factor as 𝛼 = 𝛽−1 in Equation 5. However, we find that scheduling
𝛽 rather than leaving it as a free optimizable parameter results
in more stable training. We therefore anneal 𝛽 according to 𝛽𝑡 =

𝛽0
(
1 + 𝛽0−𝛽1

𝛽1
𝑡0.8

)−1
, where 𝑡 goes from 0 to 1 during training,

𝛽0 = 0.1, and 𝛽1 for the three hierarchical sampling stages is 0.015,
0.003, and 0.001 respectively. Because the Eikonal regularization
needed for an SDF parameterization of density already removes
floaters and results in well-behaved normals, we do not find it
necessary to use the orientation loss or predicted normals from
Ref-NeRF, or the distortion loss from mip-NeRF 360.

4.2 Baking a high-resolution mesh
After optimizing our neural volumetric representation, we cre-
ate a triangle mesh from the recovered MLP-parameterized SDF
by querying it on a regular 3D grid and then running Marching
Cubes [Lorensen and Cline 1987]. Note that VolSDF models bound-
aries using a density fall-off that extends beyond the SDF zero
crossing (parameterized by 𝛽). We account for this spread when
extracting the mesh and choose 0.001 as the iso-value for surface
crossings, as otherwise we find the scene geometry to be slightly
eroded.

Visibility and free-space culling. When running Marching Cubes,
theMLP-parameterized SDFmay contain spurious surface crossings
in regions that are occluded from the observed viewpoints as well
as regions that the proposal MLP marks as “free space”. The SDF
MLP’s values in both of these types of regions are not supervised
during training, so we must cull any surface crossings that would
show up as spurious content in the reconstructed mesh. To address
this, we inspect the 3D samples taken along the rays in our training
data. We compute the volumetric rendering weight for each sample,
i.e., how much it contributes to the training pixel color. We then
splat any sample with a sufficiently large rendering weight (> 0.005)
into the 3D grid and mark the corresponding cell as a candidate for
surface extraction.

Mesh extraction. We sample our SDF grid at evenly spaced co-
ordinates in the contracted space, which yields unevenly spaced
non-axis-aligned coordinates in world space. This has the desirable
property of creating smaller triangles (in world space) for fore-
ground content close to the origin and larger triangles for distant
content. Effectively, we leverage the contraction operator as a level-
of-detail strategy: as our desired rendered views are close to the
scene origin, and because the shape of the contraction is designed
to undo the effects of perspective projection, all triangles will have
approximately equal areas when projected onto the image plane.
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Mesh Diffuse color Specular Full appearance
Figure 3: Our method produces an accurate mesh and decomposes appearance into diffuse and specular color.

Region growing. After extracting the triangle mesh, we use a
region growing procedure to fill small holes that might exist in
regions that were either unobserved by input viewpoints or missed
by the proposal MLP during the baking procedure. We iteratively
mark voxels in a neighborhood around the current mesh and extract
any surface crossings that exist in these newly active voxels. This
region-growing strategy effectively remedies situations where a
surface exists in the SDF MLP but was not extracted by marching
cubes due to insufficient training view coverage or errors in the
proposal MLP. We then transform the mesh into world space so it
is ready for rasterization by a conventional rendering engine that
operates in Euclidean space.

Implementation. We use a 20483 grid for both visibility and free-
space culling and marching cubes. Initially, we run marching cubes
only on voxels that were not culled, i.e. visible and non-empty. We
then complete the mesh with 32 region-growing iterations, where
we re-run marching cubes in a 83 voxel neighborhood around the
vertices in the current mesh. Finally, we post-process the mesh
using vertex order optimization [Sander et al. 2007], which speeds
up rendering performance on modern hardware by allowing vertex
shader outputs to be cached and reused between neighboring trian-
gles. In Appendix B we detail additional steps for mesh extraction
which do not strictly improve reconstruction accuracy, but enable
a more pleasing interactive viewing experience.

4.3 Modeling view-dependent appearance
The baking procedure described above extracts high-quality triangle
mesh geometry from ourMLP-based scene representation. Tomodel
the scene’s appearance, including view-dependent effects such as
specularities, we equip each mesh vertex with a diffuse color c𝑑
and a set of spherical Gaussian lobes. As far-away regions are only
observed from a limited set of view directions, we do not need to
model view dependence with the same fidelity everywhere in the
scene. In our experiments, we use three spherical Gaussian lobes in
the central regions (∥x∥ ≤ 1) and one lobe in the periphery. Figure 3
demonstrates our appearance decomposition.

This appearance representation satisfies our efficiency goal for
both compute and memory and can thus be rendered in real-time.
Each spherical Gaussian lobe has seven parameters: a 3D unit vector
𝜇 for the lobe mean, a 3D vector c for the lobe color, and a scalar 𝜆
for the width of the lobe. These lobes are parameterized by the view
direction vector d, so the rendered color C for a ray intersecting

any given vertex can be computed as:

C = c𝑑 +
𝑁∑︁
𝑖=1

c𝑖 exp (𝜆𝑖 (𝜇𝑖 · d − 1)) . (7)

To optimize this representation, we first rasterize the mesh into
all training views and store the vertex indices and barycentric
coordinates associated with each pixel. After this preprocessing,
we can easily render a pixel by applying barycentric interpola-
tion to the learned per-vertex parameters and then running our
view-dependent appearance model (simulating the operation of
a fragment shader). We can therefore optimize the per-vertex pa-
rameters by minimizing a per-pixel color loss as in Equation 2. As
detailed in Appendix B, we also optimize for a background clear
color to provide a more pleasing experience with the interactive
viewer. To prevent that optimization from being biased by pixels
that are not well-modeled by mesh geometry (e.g. pixels at soft
object boundaries and semi-transparent objects), instead of the L2
loss that was minimized by VolSDF we use a robust loss 𝜌 (·, 𝛼, 𝑐)
with hyperparameters 𝛼 = 0, 𝑐 = 1/5 during training, which al-
lows optimization to be more robust to outliers [Barron 2019]. We
also model quantization with a straight-through estimator [Bengio
et al. 2013], ensuring that the optimized values for view-dependent
appearance are well represented by 8 bits of precision.

We find that directly optimizing this per-vertex representation
saturates GPU memory, which prevents us from scaling up to high-
resolution meshes. We instead optimize a compressed neural hash-
grid model based on Instant NGP [Müller et al. 2022] (see Appendix
A in supplemental material). During optimization, we query this
model at each 3D vertex location within a training batch to produce
our diffuse colors and spherical Gaussian parameters.

After optimization is complete, we bake out the compressed
scene representation contained in the hash grids by querying the
NGP model at each vertex location for the appearance-related pa-
rameters. Finally, we export the resulting mesh and per-vertex
appearance parameters using the gLTF format [ISO/IEC 12113:2022
2022] and compress it with gzip, a format natively supported by
web protocols.

5 EXPERIMENTS
We evaluate our method’s performance both in terms of the ac-
curacy of its output renderings and in terms of its speed, energy,
and memory requirements. For accuracy, we test two versions of
our model: the intermediate volume rendering results described
in Section 4.1, which we refer to as our “offline” model, and the
baked real-time model described in Sections 4.2 and 4.3, which
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flowerbed

Ground truth Ours Mobile-NeRF Deep Blending
Figure 4: Test-set renderings (with insets) for our model and the two state-of-the-art real-time baselines we evaluate against,
using scenes from themip-NeRF 360 dataset. Deep Blending [Hedman et al. 2018] produces posterized renderingswhen the proxy
geometry used as input is incorrect (such as in the background of the bicycle scene) and renderings from MobileNeRF [Chen
et al. 2022a] tend to exhibit aliasing artifacts or oversmoothing.

we call the “real-time” model. As baselines we use prior offline
models [Barron et al. 2022; Mildenhall et al. 2020; Müller et al.
2022; Riegler and Koltun 2021; Zhang et al. 2020] designed for fi-
delity, as well as with prior real-time methods [Chen et al. 2022a;
Hedman et al. 2018] designed for performance. We additionally
compare our method’s recovered meshes with those extracted by
COLMAP [Schönberger et al. 2016], mip-NeRF 360 [Barron et al.
2022], and MobileNeRF [Chen et al. 2022a]. All FPS (frames-per-
second) measurements are for rendering at 1920 × 1080 resolution.

5.1 Real-time rendering of unbounded scenes
We evaluate our method on the dataset of real-world scenes from
mip-NeRF 360 [Barron et al. 2022], which contains complicated
indoor and outdoor scenes captured from all viewing angles. In
Table 1 we present a quantitative evaluation of both the offline and
real-time versions of our model against our baselines. Though our
offline model is outperformed by some prior works (as we might
expect, given that our focus is performance) our real-time method
outperforms the two recent state-of-the-art real-time baselines we
evaluate again across all three error metrics used by this benchmark.
In Figure 4 we show a qualitative comparison of renderings from
our model and these two state-of-the-art real-time baselines, and we

observe that our approach exhibits more detail and fewer artifacts
than prior work.

In Table 2 we evaluate our method’s rendering performance
by comparing against Instant-NGP (the fastest “offline” model we
evaluate against) and MobileNeRF (the real-time model that pro-
duces the highest quality renderings after our own). We measure
performance of all methods at 1920 × 1080. Both MobileNeRF and
our method are running in-browser on a 16" Macbook Pro with a
Radeon 5500M GPU while Instant NGP is running on a worksta-
tion equipped with a power NVIDIA RTX 3090 GPU. Though our
approach requires more on-disk storage than MobileNeRF (1.27×)
and Instant NGP (4.07×), we see that our model is significantly
more efficient than both baselines — our model yields FPS/Watt
metrics that are 1.44× and 77× greater respectively, in addition to
producing higher quality renderings.

Our appreciably improved performance relative to MobileNeRF
may seem unusual at first glance, as both our approach and Mobile-
NeRF both yield optimized meshes that can be easily and quickly
rasterized. This discrepancy is likely due to MobileNeRF’s reliance
on alphamasking (which results in a significant amount of compute-
intensive overdraw) and MobileNeRF’s use of an MLP to model
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Table 1: Quantitative results of our model on the “outdoor” and “indoor” scenes from mip-NeRF 360 [Barron et al. 2022], with
evaluation split for “offline” and “real-time” algorithms. Red, orange, and yellow indicate the first, second, and third best
performing algorithms for each metric. Metrics not provided by a baseline are denoted with “−”.

Outdoor Scenes Indoor Scenes
PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓

offl
in
e

NeRF [Mildenhall et al. 2020] 21.46 0.458 0.515 26.84 0.790 0.370
NeRF++ [Zhang et al. 2020] 22.76 0.548 0.427 28.05 0.836 0.309
Stable View Synthesis [Riegler and Koltun 2021] 23.01 0.662 0.253 28.22 0.907 0.160
Mip-NeRF 360 [Barron et al. 2022] 24.47 0.691 0.283 31.72 0.917 0.180
Instant-NGP [Müller et al. 2022] 22.90 0.566 0.371 29.15 0.880 0.216
Ours (offline) 23.40 0.619 0.379 30.21 0.888 0.243

re
al
-t
im

e Deep Blending [Hedman et al. 2018] 21.54 0.524 0.364 26.40 0.844 0.261
Mobile-NeRF [Chen et al. 2022a] 21.95 0.470 0.470 − − −
Ours (real-time) 22.47 0.585 0.349 27.06 0.836 0.258

Table 2: The performance (Watts consumed, frames per sec-
ond, and their ratio) and storage requirements for our real-
time method and two baselines. FPS is measured when ren-
dering at 1920 × 1080 resolution.

W ↓ FPS ↑ FPS/W ↑ MB (disk) ↓
Instant-NGP [Müller et al. 2022] 350 3.78 0.011 106.8
Mobile-NeRF [Chen et al. 2022a] 85 50.06 0.589 341.9
Ours 85 72.21 0.850 434.5

view-dependent radiance (which requires more compute to evaluate
than our spherical Gaussian approach).

Compared to Deep Blending [Hedman et al. 2018], we see from
Table 1 that our method achieves higher quality. However, it is
also worth noting that our representation is also much simpler:
while our meshes can be rendered in a browser, Deep Blending
relies on carefully tuned CUDA rendering and must store both
color and geometry for all training images in the scene. As a result,
total storage cost for Deep Blending in the outdoor scenes is 2.66×
higher (1154.78 MB on average) than for our corresponding meshes.

COLMAP MobileNeRF Mip-NeRF360 Ours

Figure 5: Comparing the meshes produced by our technique
with baselines that yield meshes. Our meshes are higher in
quality compared to those of COLMAP, MobileNeRF, and
Mip-NeRF 360. COLMAP’s mesh contains noise, floaters, and
irregular object boundaries, MobileNeRF’s mesh is a “poly-
gon soup” that may not accurately represent scene geometry,
and iso-surfaces from Mip-NeRF 360’s density field tend to
be noisy and represent reflections with inaccurate geometry.

5.2 Mesh extraction
In Figure 5 we present a qualitative comparison of our mesh with
those obtained using COLMAP [Schönberger et al. 2016], Mobile-
NeRF [Chen et al. 2022a] and an iso-surface of Mip-NeRF 360 [Bar-
ron et al. 2022]. We evaluate against COLMAP not only because
it represents a mature structure-from-motion software package,
but also because the geometry produced by COLMAP is used as
input by Stable View Synthesis and Deep Blending. COLMAP uses
volumetric graph cuts on a tetrahedralization of the scene [Jancosek
and Pajdla 2011; Labatut et al. 2007] to obtain a binary segmen-
tation of the scene and then forms a triangle mesh as the surface
between these regions. Because this binary segmentation does not
allow for any averaging of the surface, small noise in the initial
reconstruction tends to result in noisy reconstructed meshes, which
results in a “bumpy” appearance. MobileNeRF represents the scene
as a disconnected collection of triangles, as its sole focus is view
synthesis. As a result, its optimized and pruned “triangle soup” is
highly noisy and may not be ideal for downstream tasks such as
appearance editing.

As recently shown [Oechsle et al. 2021; Wang et al. 2021; Yariv
et al. 2021], extracting an iso-surface directly from the density field
predicted by NeRF can sometimes fail to faithfully capture the
geometry of the scene. In Figure 5 we show this effect using Mip-
NeRF 360 and extract the iso-surface where its density field exceeds
a value of 50. Note how the surface of the table is no longer flat, as
the reflection of the vase is modeled using mirror-world geometry.
In contrast, our method produces a smooth and high-fidelity mesh,
which is better suited for appearance and illumination editing, as
demonstrated in Figure 1.

5.3 Appearance model ablation
In Table 3 we present the results of an ablation study of our spheri-
cal Gaussian appearance model. We see that reducing the number
of SGs to 2, 1, and 0 (i.e., a diffuse model) causes accuracy to degrade
monotonically. However, when using 3 SGs in the periphery our
model tends to overfit to the training views, causing a slight drop
in quality compared to our proposed model with just a single pe-
ripheral SG. Furthermore, compared to 3 SGs everywhere, using a
single SG in the periphery reduces the average size vertex by 1.52×
(from 36 to 23.76 bytes), which significantly reduces the memory
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Table 3: An ablation study of our view-dependent appearance
model on all scenes from the mip-NeRF 360 dataset.

PSNR ↑ SSIM ↑ LPIPS ↓ MB (GPU) ↓
Diffuse (0 Spherical Gaussians) 22.32 0.636 0.352 436.1
1 Spherical Gaussian 24.02 0.680 0.322 549.1
2 Spherical Gaussian 24.39 0.693 0.312 662.2
3 SGs in the periphery 24.34 0.688 0.317 775.3
View-dependent MLP [2021] 24.30 0.687 0.318 516.8
L2 loss 24.52 0.690 0.316 572.6
Ours 24.51 0.697 0.309 572.6

bandwidth consumption (a major performance bottleneck for ren-
dering). Perhaps surprisingly, replacing our SG appearance model
with the small view-dependent MLP used by both SNeRG [Hed-
man et al. 2021] and MobileNeRF [Chen et al. 2022a] significantly
reduces rendering quality and yields error metrics that are roughly
comparable to the “1 Spherical Gaussian” ablation. This is especially
counter-intuitive given the significant cost of evaluating a small
MLP (∼2070 FLOPS per pixel) compared to a single spherical Gauss-
ian (21 FLOPS per pixel). Additionally, we ablate the robust loss
used to train our appearance representation with a simple L2 loss,
which unsurprisingly boosts PSNR (which is inversely proportional
to MSE) at the expense of the other metrics.

Ground truth Our rendering Our mesh
Figure 6: Our framework is based on the neural SDF represen-
tation, which struggles to represent semi-transparent objects
or thin structures. These limitations can further affect our
rendering reconstruction performance.

5.4 Limitations
Although our model achieves state-of-the-art speed and accuracy
for the established task of real-time rendering of unbounded scenes,
there are several limitations that represent opportunities for future
improvement: We represent the scene using a fully opaque mesh
representation, and as such our model may struggle to represent
semi-transparent content (glass, fog, etc.). And as is common for
mesh-based approaches, our model sometimes fails to accurately
represent areas with small or detailed geometry (dense foliage, thin
structures, etc.). Figure 6 depicts additional extracted meshes visual-
ization which demonstrates our surface reconstruction limitations
and their effect on the rendering reconstruction. These concerns

could perhaps be addressed by augmenting the mesh with opacity
values, but allowing for continuous opacity would require a com-
plex polygon sorting procedure that is difficult to integrate into a
real-time rasterization pipeline. One additional limitation of our
technique is that our model’s output meshes occupy a significant
amount of on-disk space (∼430 megabytes per scene), which may
prove challenging to store or stream for some applications. This
could be ameliorated through mesh simplification followed by UV
atlasing. However, we found that existing tools for simplification
and atlasing, which are mostly designed for artist-made 3D assets,
did not work well for our meshes extracted by marching cubes.

6 CONCLUSION
We have presented a system that produces a high-quality mesh for
real-time rendering of large unbounded real world scenes. Our tech-
nique first optimizes a hybrid neural volume-surface representation
of the scene that is designed for accurate surface reconstruction.
From this hybrid representation, we extract a triangle mesh whose
vertices contain an efficient representation of view-dependent ap-
pearance, then optimize this meshed representation to best repro-
duce the captured input images. This results in a mesh that yields
state-of-the-art results for real-time view synthesis in terms of both
speed and in accuracy, and is of a high enough quality to enable
downstream applications.
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