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Abstract

This paper examines the construction of a 3-D surface model
of an object rotating in front of a camera. Previous research
in depth from motion has demonstrated the power of using
an incremental approach to depth estimation. In this paper,
we extend this approach to more general motion and use a
full 3-D surface model instead of a 21/,-D depth map. The
algorithm starts with a flow field computed using local cor-
relation. It then projects individual measurements into 3-D
points with associated uncertainties. Nearby points from suc-
cessive frames are merged to improve the position estimates.
These points are then used to construct a deformable surface
model, which is itself refined over time. We demonstrate
the application of our new techniques to several real image
sequences.

1 Introduction

This paper examines the construction of a 3-D surface model
from image sequences of an object rotating in front of a sta-
tionary camera. Because the motion of the object between
frames is known, we can use traditional depth from motion
techniques to directly recover the depth of points in the im-
age. Our approach uses a large number of images with a small
amount of motion between successive images. This makes it
easier to compute flow, but makes individual flow measure-
ments much less reliable. To compensate for this, we use an
incremental estimation algorithm to integrate measurements
from successive frames and reduce the uncertainty over time.

The incremental approach to depth estimation was previ-
ously developed by Matthies ez al. [10]. In this paper, we ex-
tend their work to true 3-D surface models. A simpler method
for creating such models from the same image sequence is to
use the object silhouettes to “carve out” a bounding volume
for the model [15]. However, to obtain a more detailed de-
scription, we need to use the optic flow of the texture marks
to give us a dense estimate of surface shape. Our new shape
from rotation algorithm builds such amodel, and also provides
us with a framework within which we can explore a number
of important issues in computer vision. These include flow
estimation, uncertainty modeling, incremental estimation, 3-
D surface representation and reconstruction, and massively
parallel algorithms.
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Our algorithm for the automatic acquisition of 3-D object
models can be used in anumber of applications. These include
robotics manipulation, where the object must first be described
and/or recognized before it can be manipulated; Computer
Aided Design (CAD), where automatic model building can
be used as an input stage to the CAD system; and computer
graphics animation or virtual reality, where it facilitates the
task of an animator, allowing him easy access to alarge catalog
of real-world objects. All of these applications become much
more interesting if the acquisition can be performed quickly
and without the need for special equipment or environments.
Our aim is to build such a system, using the motion of the
turntable and object to provide most of the system calibration
automatically.

1.1 Previous work

Some of the early work in object motion estimation identified
Kalman filtering as a useful framework for incremental esti-
mation since it incorporates representations of uncertainty and
provides a mechanism for incrementally reducing uncertainty
over time. Applied to depth from motion, this framework was
at first restricted to estimating the positions of a sparse set of
trackable features such as points or line segments [7]. Another
line of work addressed the problem of extracting denser depth
or displacement estimates from image sequences. However,
these approaches either were restricted to two frame analysis
[9, 2] or used batch processing of the image sequence, either
through line fitting [5, 3] or spatio-temporal filtering [1]. The
work of {10] overcame these limitations by combining a re-
cursive estimation procedure with dense flow measurement
to produce a 21/2-D depth map. In this paper, we extend this
work to use a full 3-D shape model.

1.2 Framework

Our shape from rotation algorithm operates in the following
stages. First, the 2-D optical flow between successive im-
age pairs is extracted over the whole image (Section 2). The
correlation surface corresponding to the Sum of Squared Dif-
ferences (SSD) measure is used to compute both the best flow
estimate at each point and its 2-D uncertainty. Next, using the
known object motion, we project this flow into a 3-D position
measurement with an associated 3 x 3 uncertainty at each
point (Section 3). This “cloud” of intensity-tagged depth val-



ues is then refined by merging nearby points from successive
frames whose uncertainties overlap sufficiently (Section 4).
A locally parametrized surface is then fitted to this collection
of points (Section 5) to reduce noise in nearby measurements
and to fill in the data where it is unreliable. In Section 6 we
present some experiments with real image sequences acquired
in our lab. In Section 7 we compare our approach with alter-
native shape acquisition techniques, and we suggest a number
of extensions to our work.

2 Optical flow

Given two or more images, we can compute a two-
dimensional vector field called the optic flow which measures
the interframe motion of each pixel in the image. A number
of different algorithms have been developed previously for
extracting the optic flow. In this paper, we use a variant of
correlation called the Sum of Squared Differences (SSD) mea-
sure [2], since it provides us not only with flow estimates but
also with uncertainty estimates for each measurement. Alter-
native approaches to computing optic flow include gradient-
based techniques [9, 11] and spatio-temporal filtering [1] (see
[11, 2] for a comparison of several of these techniques).

The Sum of Squared Differences method integrates the
squared intensity difference between two shifted images over
asmall area to obtain an error measure e(u, v; z, y) (see [2, 16]
for details). The SSD flow estimator selects at each pixel
(z,y) the flow (u, v) which minimizes this SSD measure. It
also uses the shape (steepness) of the error surface to deter-
mine the confidence in this estimate [2, 14, 16]. The shape of
the error surface can also be used to estimate regions of the
image when the flow estimates are suspect (e.g., because of
occlusion [2]) or where no motion is present [16].

3 Constrained flow and depth recovery

The general 2-D flow estimator described in the previous
section is a useful first step in determining shape from motion
when the object motion (egomotion)is unknown. In our work,
however, we know the angular position of the tumntablein each
frame, and therefore the relative 3-D motion of the object
(or equivalently, of the camera). This makes the problem of
depth recovery much easier. Using the known motion, we can
compute for each pixel a constraint line for the flow at that
point, with the actual (ideal) flow observed depending only on
the depth of the surface at that pixel. Altematively, since we
know the motion between the two frames, we could use the
standard epipolar geometry to find the set of corresponding
epipolar lines in the two images [5].

The flow extraction algorithm we use first extracts corre-
sponding rows from the two images, and then interpolates
each row by a factor of 4. For each candidate (fractional)
horizontal displacement, a discrete approximation to the SSD
measure is computed at each pixel [16]. A parabola is then
fit to the minimum SSD value and its two neighbors and is

used to compute the sub-pixel flow estimate u and its variance
02 = 202 /a, where o? is the variance of the image noise and
a is the second derivative of the parabola [16].

For each flow estimate u we compute the corresponding
3-D object space location p using the inverse perspective pro-
jection [16]. For each 3-D point, we also compute a 3 x 3
covariance matrix Cp which characterizes the shape and mag-
nitude of the point’s positional uncertainty. The component of
this covariance along the viewing ray can be approximately
computed using the flow variance and the Hessian of the
inverse projection operator. The other two axes of the co-
variance ellipsoid can be chosen arbitrarily and their length
(standard deviation) set to a suitably chosen constant value
0p.

4 Incremental estimation (points)

‘The result of our two-frame optic flow analysis and backpro-
jection into object space gives us a “clond” of uncertainty-
tagged points lying on the surface of the object. As the object
continues to rotate and more points are acquired, point col-
lections from successive frames must be merged in order to
reduce the noise in point location estimates. To represent the
3-D position of the points, we use an object-centered coordi-
nate reference frame whose origin is fixed to the top of the
turntable and rotates with it.

To merge neighboring 3-D points from different frames, we
start by computing an uncertainty-weighted distance measure

dij = (pi — p;)T (C7' + C7")(pi — p;). (1)

If this distance is sufficiently small, we can merge the two
points and replace them with a single measurement

Pt = Ci(C;'p:i + C; 'p;) ()
with a reduced uncertainty
Ci=(C7'+C;) (3)

The problem with this simple approach is that there may be
many candidate matches for a given point, especially if one
elongated uncertainty ellipsoid overlaps several other points.
To reduce this problem, we limit merges to points whose un-
certainty ellipsoid major axes are nearly parallel and which
also meet the previous distance criteria. In practice, we make
the merging step even simpler by re-projecting the 3-D lo-
cations and their uncertainties into the camera image plane.
Two points are merged if their image plane centers lie within
asmall distance of each other (say, !/ pixel) and their depths
overlap sufficiently (using a 1-D version of the uncertainty-
weighted distance). The thresholds for merging points are
set high enough so that neighboring measurements from the
same frame are not merged (we want our final model to be at
least as accurate as the input image) but low enough so that
oversampling (the density of 3-D points per image pixel) is
not too great.



5 Local surface fitting

Once the 3-D point estimates acquired from multiple frames
have been integrated sufficiently to make them reliable, we
can start building a 3-D surface model. This model serves
both to reduce the noise in the position estimates (through
smoothing) and to fill-in areas on the object surface where no
reliable flow information is available.

Generating a parametric surface from a sparse and scattered
collection of points is in general quite difficult. To solve this
problem, we have developed a new 3-D surface interpolation
model based on interacting oriented particles [17]. These
particles, which represent local surface patches, have energy
functions which favor the alignment of normals of neigh-
boring particles, thus endowing the surface with an elastic
resistance to bending. The particles also have a preferred
inter-particle spacing distance, which encourages a uniform
sampling density over the surface.

Once a reasonably accurate surface model has been con-
structed, we can dispense with the optic flow computation
altogether. As each new image arrives, it directly modifies
the deformable surface model and its associated intensities by
making small local changes which better register the model
and the image.

6 Experimental results

We have performed a number of experiments with our shape
from rotation algorithms on both live and off-line image se-
quences. The experimental setup consists of a spring-wound
microwave turntable with a position encoding grid taped to
its side (Figures 1-3a) and a stationary camera mounted on
a tripod. A rough calibration of the intrinsic and extrinsic
camera parameters can be obtained by locating the ellipse
that defines the turntable top and measuring the camera to
turntable distance. A more exact calibration can be obtained
using multiple images of a calibration cube [15].

The live experiments involve building an octree bounding
volume of the object, processing a 512 x 480 monochrome
image every 3.4 seconds on a RISC-based workstation [15].
The algorithm is first adapted to the empty turntable whileit is
spinning, both to memorize the background, and to locate the
position encoding ring. After the object is placed on the table,
each new image is then thresholded and the turntable angle
computed from the binary codes averaged over 32 columns
(accurate to about 0.1°). The bounding volume is then com-
puted from the object silhouettes [15].

For the off-line experiments, we first recorded onto video-
tape a number of image sequences of different objects spin-
ning on the turntable (Figures 1-3a). We then digitized each
sequence using the single-frame playback capabilities of our
video recorder to obtain a high resolution image sequence of
about 500 frames (about 0.72° rotation between frames). For
the experiments presented in this paper, each image was sub-
sampled from 512 x 48010 256 x 240 with only every second
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frame being used. The resulting interframe rotation is about
1.44°, with amaximum horizontal flow (on the tumtable edge)
of about 2.9 pixels.

These image sequences were input into our optic flow ex-
traction algorithm, whose output was then backprojected into
3-D world coordinates. Figures 1, 2, and 3 show three of the
image sequences we are using and the results of these initial
depth extraction stages. The first image (a) in each figure
shows the first frame of the input intensity image sequence.
The second image (b) shows an intensity-coded depth map
extracted from the first pair of images (depth values with high
uncertainty are not shown). The 3-D position estimates com-
puted by backprojecting these depth values are shown in the
third part (c) of each figure, using a top view of the object to
better see its structure (the wireframe cube and axes are for
reference only). Both the circular structure of the tumntable
edge, and the rectangular structure of the tea box (Figure 1)
and the domino cube (Figure 3) are roughly recovered.

The next step in the shape from rotation algorithm consists
of merging neighboring 3-D points acquired from different
viewpoints. Figures 4, 5, and 6 show the results of this
merging step, operating incrementally on the complete 250
image sequences. We present this data as isolated points
shown in 4 different projections: top, front, side, and oblique.
From these figures, we can see that the overall shape of the
objects is recovered well, although the exact surface data is
not very smooth. Adding a small amount of image-plane
smoothing should help to reduce this effect [10]. Of course,
once a complete surface model is fit to this sparse data, the
resulting solution will also be smooth. Figures 5b—d show that
in some cases, shadows will be incorporated into the object
model. To remove these shadow points, we could either cut
off the bottom of the model, or use a more sophisticated color-
based image preprocessing stage.

7 Discussion

The techniques we have described in this paper perform a
shape construction task similar to *hat usually associated with
active range sensors [4]. An example of such a sensor is
structured light, where an encoded light pattern falling on the
object is used to give direct (and usually sparse) measurements
of depth. Compared to active range sensors, our approach
requires a far less structured environment, since no special
lightingsources are required, and the calibration of the system
is simple and fairly automatic. Our technique also has the
potential for better accuracy since our measurements are dense
(at least in textured areas), and because we see more views
of the object. On the other hand, our flow-based approach
will fail in areas where the surface has a uniform albedo. An
experimental comparison of these two techniques needs to be
performed to better quantify these effects.

An alternative to the approach presented in this paper is
to use the silhouette of the object in each frame to construct
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Figure 2: dodecahedron image sequence: (a) first image (b) depth map from flow (darker is nearer) (c) top view of 3-D
point cloud
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Figure 3: domino image sequence: (a) first image (b) depth map from flow (darker is nearer) (c) top view of 3-D point cloud
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Figure 4: Final merged data from assamimage sequence: (a) top view (b) oblique view (c) front view (d) side view

a b c d

Figure 5: Final merged data from dodecahedron image sequence: (a) top view (b) oblique view (c) front view (d) side view

a b c d

Figure 6: Final merged data from domino image sequence: (a) top view (b) oblique view (c) front view (d) side view



a bounding volume for the object [15].  This bounding
volume can provide a non-linear (inequality) constraint on
the position of surface points.  Tracking the silhouettes
through three or more images can also be used to estimate
the location and curvature of points on the surface of the
object [8, 18, 6). Combining silhouette-based and flow-based
approaches should yield an algorithm that works for a much
wider variety of object shapes and textures.

Our shape from rotation algorithm would be even more
useful if we could change the position of the camera and/or
the object. The former case is easier to handle: we simply
re-calibrate the system and continue processing with the new
camera parameters. Determining the change in object pose
from the surface data itself is more difficult [13].

The algorithm described in this paper builds a detailed lo-
cally parameterized surface model of the object. The next step
in processing would be to build a higher-level description of
the object, either for more efficient CAD/graphics manipula-
tion, or for object recognition. An example of such a model
would be a superquadrics parts model, which could be fitted
directly to our sparse collection of 3-D points [12].

8 Conclusions

Shape from rotation is a practical approach to building 3-D
models from a sequence of images. The goal of this work is
to produce a locally accurate model of shape and intensity of
an unknown object As such, this technique should be useful
in a variety of robotics and CAD tasks, as well as providing a
novel source of objects for computer animation systems.

The design of our algorithm was motivated by the recent
success of incremental algorithms in building high-quality
depth maps from motion sequences. This work can be viewed
as an extension of this work to full 3-D shape models.

The design of a complete shape from rotation system re-
quires the solution of a number of fundamental computer
vision problems. These include flow estimation, uncertainty
modeling, incremental estimation, and 3-D surface represen-
tation and reconstruction. We have implemented and tested
the main stages of processing (flow constraints, flow estima-
tion, backprojection into 3-D, and 3-D point merging), but
much interesting work remains to be done (surface recon-
struction and refinement, evaluation, and enhancements). We
expect that shape from rotation will prove to be an interesting
and challenging problem to solve, as well as a good framework
for studying various important computer vision algorithms.
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