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1 Introduction

Regularization is a class of mathematical techniques used in data analysis and engi-

neering to help solve difficult, ill-conditioned estimation and design problems. Reg-

ularization was originally applied to problems in numerical analysis such as function

approximation and in statistics. The central idea in regularization is to restrict the

range of possible solutions to ensure a unique and stable solution. Usually, this is
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achieved by imposing smoothness constraints on the solution, typica]ly through a
penalty term involving derivatives of the solution.

Regularization has been used successfully in computer vision for formulating and
solving many low-level vision problems such as stereo matching. It has strong con-
nections to iterative and massively parallel (neural network) algorithms. Recently,
regularization has been applied to the formulation and solution of learning problems
in neural nets. In this chapter, we review the applications of regularization in com-
puter vision and neural networks, and demonstrate how regularization provides a
coherent framework and a useful set of techniques for solving problems which arise in
these fields.

The chapter is organized around three main themes: regularization applied to
computer vision, the Bayesian interpretation of regularization, and regularization
applied to learning in neural networks. We begin the chapter with a review of the
classical formulation of regularization applied to the solution of inverse problems, i.e.,
problems where only the sampled output of a model or process are given, and its
unknown parameters must be recovered. We use a one-dimensional curve fitting as
our example. We then review how regularization has been applied to computer vision,
including the problem formulation, its solution using iterative numerical techniques,
and its implementation using neural networks. Next, we discuss how regularization
is closely linked to Bayesian estimation techniques, both in finding optimal (and
robust) estimates from noisy measurements, and in selecting the optimal amount of
smoothing to be used. Turning our attention to learning in neural networks, we show
how learning can be interpreted as fitting an approximating function to a limited set
of examples, and how regularization can be used both to specify the desired function
and to find an efficient representation for it. In addition to these uses of regularization,
we also briefly discuss other applications of neural networks to computer vision, and

other applications of regularization to neural networks and learning. We close with



a discussion of the utility of regularization in both vision and learning, and suggest

some promising areas for future research.

2 The regularization of inverse problems

Many difficult problems in the applied sciences and engineering can be formulated
or viewed as tnwverse problems, where the task is to recover the input to a complex
process, or the unknown parameters governing its behavior, from a limited set of
output observations. For example, the recovery of 3-D scene information from 2-D
intensity images, one of the central problems in computer vision (Horn, 1977), can
be viewed as the inverse of the image formation forward process, which has been
the subject of extensive study in computer graphics. Similarly, the recovery of 3-D
geophysical structure from well logs or from seismic data is a difficult inverse problem
(Duda, 1982). In neural networks, the estimation of unknown network weights or
parameters from a set of input-output examples (learning) is an example of an inverse
problem.

Common to all of these inverse problems is the fact that the data usually under-
constrains the range of possible solutions. More formally, these problems are said to
be ill-posed in the sense of Hadamard (Tikhonov and Arsenin, 1977; Bertero, Poggio
and Torre, 1988). An ill-posed problem is one whose solution does not exist, is not
unique, or does not vary continuously with respect to the input (lack of stability).

As a simple example, consider the problem of fitting a function y = f(z) to a set
of observations {(#;,y;),i = 1...n}. The problem is ill-posed since, as stated, it can
admit an infinite number of solutions. On the other hand, a solution may not exist if
there are noisy, redundant data points (Terzopoulos, 1986b). A variety of techniques
could be used to solve this problem, including linear regression (fitting a straight

line), fitting low-order polynomials, piecewise linear interpolation, and higher-order



spline interpolation (Cybenko, 1994). Many of these techniques work only for certain
data or functions, or are not readily extended to higher-dimensional problems.

Regularization is a more general and more widely applicable approach to solving
these kinds of problems. In this chapter, we concentrate on methods which minimize
a stabilizing functional P(f) in order to find the regularized solution, although many
other regularization techniques exist, including methods which restrict the space of
possible solutions using low-dimensional approximations to the solution (Tikhonov
and Arsenin, 1977). We present below a simplified exposition of regularization theory.
For more details, including proofs about existence and stability, see (Tikhonov and
Arsenin, 1977; Morozov, 1984), and references therein.

Most commonly, the functional P measures the smoothness of the solution f.! For

our one-dimensional curve fitting example, a possible stabilizing functional could be

Wﬂz/ﬁw, (1)

where f, denotes the derivative of f with respect to . Minimizing this smoothness

functional while satisfying the original set of equations

f(mi):y‘h ’I::]_,...,TL (2)

results in piecewise linear interpolation. Similarly, if we minimize

P(f) = [ fiada, (3)

we obtain a piecewise cubic interpolating spline (Ahlberg, Nilson and Walsh, 1967;
Schumaker, 1981).
Minimizing P(f) while satisfying the original set of measurements is just one of

three commonly used formulations. Let us denote the original set of measurements by

LA functional such as P maps functions into scalar values.



the system y = Af and write the stabilizing functional as a norm ||Pf|.?> In general,

y = Af can be used to describe any forward process, e.g., an integral equation

of the form y(z) = [ K(z,n)f(n)dn, where K(z,n) can be an arbitrary, spatially

varying kernel function. For the set of discrete observations in (2), we have K(z,7) =

> 6(z — 2 —n) and y = ¥, 9;6(w — ;). The linear differential stabilizers in (1) and
d

(3) can we written as P = - and P = %, respectively.

- The three main regularization methods (Poggio and Koch, 1985) are:

(i) find the solution f that satisfies [|Af — y|| < e and which minimizes
121,
(i) find the solution f that satisfies ||Pf|| < C and which minimizes
IAf =yl
(iii) find the solution f that minimizes
IASf =yl + Al PSII-

The first of these approaches (with ¢ = 0) corresponds to the interpolating splines
introduced above. The second approach, which corresponds to a limited smoothness
variation, is not often used and will not be considered further. The third approach,
often called the penalty method, is the one most commonly used. Here, the regular-
1zation parameter A controls the amount of smoothing, with larger As resulting in
smoother solutions. The limit as A — 0 is the interpolating spline, while the limit as
A — oo is a regression with a solution in the null space of P (e.g., linear regression for
second order stabilizers). In certain cases, the optimal value of A can be estimated
from the data (see Section 8). This formulation of regularization also has a close

correspondence to Bayesian estimation techniques (see Section 7).

2A and P, which map functions into functions, are called operators.
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Figure 1: Interpolating/approximating cubic splines

The above curves are obtained by minimizing (4) for various settings of A. The
solution for A — 0 approaches an interpolating spline (dotted curve). The solution
for A = oo is a least-squares line fit (dashed line). Intermediate values of A control
the amount of smoothing. The data points were obtained by randomly sampling a

Hermite quadratic function 1.1(1 — z + 2m2)e——m2/2 and adding Gaussian noise with

o = 0.05 (MacKay, 1992a).



For our data fitting example, the application of the penalty method results in the

minimization of the functional

V) “i 5 [ s, (4)

n

7=1

where each squared measurement error (f(z;) — y;)?

1s inversely weighted by the
variance o7 of the measurement y;. Minimizing the above functional results in an ap-
prozemaling or smoothing cubic spline instead of the usual interpolating spline (which
is the limiting case A = 0, see Figure 1) (Reinsch, 1967; Ahlberg, Nilson and Walsh,
1967; Schumaker, 1981).

The second order stabilizer appearing in the second term of (4) is a simple example

of the more general pth order stabilizer

1= 3 fwnte) (52 )

which is also called Tikhonov’s stabilizing functional (Tikhonov and Arsenin, 1977).
In the above, w,,(z) are spatially varying weighting functions which can be used to
locally control the smoothness (and continuity) of the solution (Terzopoulos, 1986b).

Regularization can easily be extended to higher dimensional spaces. One possible

generalization of Tikhonov’s stabilizing functional to d dimensions is

112 = 3 [, () D" )P (6)

where D*™ = V?™, D?mtl = YV?™ V2 ig the Laplacian operator, V is the gradi-
ent operator, and x is the multidimensional domain of the function f (Poggio and

Girosi, 1989).® This functional is invariant under translation and rotation of the axes

2
3An alternative formula for |D™f(x)|? is Zj;-l—---—{-jd:m jl’”!, ( 471 (x) > (Terzopoulos,

[ 21 Jd
rrlds dz dz
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spanning x, unlike, for example, tensor product splines*, which are not rotationally
invariant. Rotational invariance is an important property when we wish to solve a
problem in a coordinate-independent manner.

For spatially invariant weighting functions wp,(x) = wm, these functionals cor-
respond to sums of generalized spline functionals (Duchon, 1976; Meinguet, 1979).
Spatially varying wm,(x) can be used to implement controlled-continuity stabilizers,
which are important for visual surface reconstruction (see Section 3). The regularized
solution of problems such as (4) is usually performed by discretization and (potentially
parallel) numerical optimization (see Section 4).

One advantage of regularization over other problem formulations is that stabi-
lizers can easily be added to existing problem formulations and, under appropriate
conditions, the existence, uniqueness, and stability of solutions can be guaranteed
(Tikhonov and Arsenin, 1977; Morozov, 1984). Regularization has been applied to
a large number of important problems in low-level computer vision (Poggio, Torre
and Koch, 1985) not only to formulate the problems, but also to devise parallel
algorithms and analog (“neural”) network implementations. Regularization theory
has natural and deep connections with Bayesian (statistical) formulations of inverse
problems. Such Bayesian formulations can be used to obtain optimal estimates and
to characterize the uncertainty in these estimates. Regularization also provides a
general framework for learning in neural networks, and for devising efficient learning

algorithms. We will explore each of these topics in subsequent sections.

“Tensor product splines are functions of the form f = ... ai;b;(z)b;(y) that are commonly used
in computer aided geometric design (Farin, 1992). They arise in the solution of regularized problems
where the stabilizer can be written as the product of univariate stabilizers, e.g., P = P, P, (Poggio

and Girosi, 1990).



3 Regularization in vision: problem formulation

Computer vision is an interdisciplinary field which studies computational models of
visual information processing. Its aims are both to devise efficient algorithms for
robotics and machine vision applications, and to investigate computational models
of human and animal vision. While these two goals do not always coincide, they
provide a fertile ground for interplay and cross-disciplinary research. A number of
good textbooks are available, both on computational models of human vision and on
robot vision (Marr, 1982; Ballard and Brown, 1982; Horn, 1986; Wechsler, 1990).

In Marr’s hierarchical model of vision (Marr, 1982), images are processed by inde-
pendent low-level vision modules to produce a more informative intermediate repre-
sentation (Figure 2). For this intermediate level representation, Barrow and Tenen-
baum (1978; 1981) proposed computing a set of intrinsic images, which represent
scene characteristics such as distance, orientation, reflectance, and illumination in
multiple retinotopic (image-aligned) maps. Marr (1978) proposed a 214 -D sketch
which encodes local surface orientation and distance to the viewer as well as discon-
tinuities in the orientation and distance maps.

One of the central problems in the computation of this intermediate representation
is visible surface reconstruction (Blake and Zisserman, 1987; Terzopoulos, 1988), in
which disparate and possibly sparse measurements are integrated into a piecewise
continuous representation of depth and orientation (at the input of the 21/5-D Sketch
box in Figure 2). In its simplest form, this problem reduces to the interpolation of
a bivariate function f(z,y) through a set of points {(=z;,y:,2:)}. For example, we
may wish to interpolate a depth or elevation map from a set of sparse stereo matches
(Grimson, 1981).

Some of the early formulations of this problem were in terms of variational prin-

ciples (Grimson, 1983). The problem was then reformulated using regularization
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Figure 2: A visual processing hierarchy
The processing of images proceeds from the low level, where features and intrinsic
images are extracted, through the intermediate level, where features are grouped
and transformed, to the high level, where objects are recognized. Rectangles indicate
representations, ovals indicate processes. For alternatives to this bottom-up hierarchy

based on independent modules, see (Aloimonos and Shulman, 1989; Clark and Yuille,

1990). 10
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Figure 3: Piecewise continuous surface fitting from 9 data points.
The 9 data points are shown on the left, along with the depth discontinuities (missing
line segments) and orientation discontinuities (missing intersections). The disconti-
nuities were introduced by hand for illustrative purposes. The solution on the right

clearly shows the effects of depth and orientation discontinuities.

theory (Poggio, Torre and Koch, 1985; Terzopoulos, 1986b). A useful stabilizer for
this problem (a special case of (6)) is

P = [ [ oleyHt = r(e,g)llf2 + £+ 7l )lf + 2%, + S dudy, (1)

where p(z,y) is a rigidity function, and 7(z,y) is a tension function (Terzopoulos,
1986b). The rigidity and tension functions can be used to allow depth and orienta-
tion discontinuities by setting p(z,y) = 0 and 7(z,y) = 0, respectively, along some
curves in the z-y plane (Figure 3). The solutions which minimize the above smooth-
ness constraint are generalized piecewise continuous splines under tension (Terzopou-
los, 19865). While the above example assumes a mixture of first and second order
stabilizers, the choice of correct smoothness is in general difficult.

When the locations of the discontinuities (i.e., the zeros of p(z,y) and 7(z,y)
functions) are specified, the above functional is quadratic, and the surface recon-

struction problem can be solved either directly or with gradient descent techniques

11



(see Section 4). In the more general case, however, the location of the discontinuities
must be inferred from the input data itself (Blake and Zisserman, 1987; Terzopoulos,
1988; Mumford and Shah, 1989). This discontinuity detection problem is much more
difficult than solving the interpolation problem itself.

Fortunately the discontinuity detection problem can also be formulated in a vari-
ational (functional minimization) form by making the continuity functions auxillary
parameter functions to be estimated along with f using regularization. A variety of
formulations for the discontinuity detection problem have been developed, with most
of them based on a discretized version of the interpolation problem (Geman and Ge-
man, 1984). For example, a discrete energy E based on (7) using only the first-order
stabilizer (i.e., setting 7(z,y) = 0) would be

E(fihov) = > {iz(fi,j —di i)+ M[(fis — fimrg)*(1 = Biy)

4,4 4,3

F(Fog — Fagmr) (1 = vi3)] +A2shis + VZjvi,j} (8)
(Geiger and Girosi, 1991). Here, the f; ; variables are the values of the function f(z,y)
sampled on a 2-D rectangular grid, and the d;; are the input measurements. The
h;; and v; ; variables are the horizontal and vertical line processes that indicate the
presence (h;; = 1) or absence (h;; = 0) of a depth discontinuity. The line processes
lie on a dual grid (Figure 4) with respect to the sampled depth values (Geman and
Geman, 1984).

In (8), the first term couples the solution f to the input measurements d;;, in-
versely weighted by the individual measurement uncertainties o7; (where measure-
ments are absent, 0'2 ; = 00). The second term, weighted by A, corresponds to the
discretized version of a first order Tikhonov stabilizer gated by the line processes.
The third term penalizes the creation of unnecessary line processes, with ’yffj and 7} ;

being related to the prior probability of a discontinuity (e.g., as might be provided
by running an edge detector over the input image (Gamble and Poggio, 1987; Geiger

12



O O O

Figure 4: Dual lattice for representing discontinuities
Depth values are represented by circles and discontinuities by line segments. The dual
grid on which the discontinuities lie is formed by shifting the original grid vertically

and horizontally by half a pixel, resulting in twice as many sites as the original grid.

and Girosi, 1991)). Other discretizations of the surface energy are possible, including
ones which have only a single grid of line processes coincident with the depth values
(Geiger and Yuille, 1991).

In addition to visible surface reconstruction, regularization has also been applied
to a large number of other problems in low-level vision (Poggio, Torre and Koch,
1985; Terzopoulos, 1986a; Bertero, Poggio and Torre, 1988). These include optical
flow (motion) computation (Horn and Schunck, 1981; Hildreth, 1986), shape from
shading (Horn and Brooks, 1989; Horn, 1990), stereo matching (Witkin, Terzopou-
los and Kass, 1987; Barnard, 1989), edge detection (Poggio, Voorhees and Yuille,
1985; Gamble and Poggio, 1987), parametric curve and surface fitting (Kass, Witkin
and Terzopoulos, 1988; Terzopoulos, Witkin and Kass, 1988), and motion coherence
(Yuille and Grzywacz, 1988). Below, we briefly present the formulations for optical
flow, shape from shading, and stereo. We should also note that Markov Random

13



Field models (see Section 7), which are closely related to regularized formulations,
have been proposed as a method for integrating the output of these various low-level
vision modules (Poggio, Gamble and Little, 1988; Clark and Yuille, 1990).
Recovering optical flow involves estimating the local pixel motion everywhere in an
image given two or more images from a motion sequence. The regularized formulation
of optical flow involves smoothing the two dimensional flow field (u(z,y),v(z,y))
computed from the temporal and spatial derivatives of the intensity image I(z,y). If

the brightness of a portion of an image does not change as it moves, we can write

dl  8lds O8Idy oI
— T ——— — R —_ = -[m =
G oed Toga "o evthetl=0

(Horn and Schunck, 1981). The regularized solution is obtained by minimizing
//(Imu+lyv—l— L)% + A(u? + u + 02 +v2) dz dy, (9)

where the first term is the squared brightness change constfaz'nt and the second term is
the usual Tikhonov stabilizer. The above formulation smooths the flow uniformly in
two dimensions. Alternative formulations have been proposed which smooth the flow
only along contours (Hildreth, 1986) or perpendicular to the local intensity gradient
(Nagel and Enkelmann, 1986).

Shape from shading, or the recovery of surface orientation and depth from the
smooth variation in intensity (shading) in an image (Horn and Brooks, 1989), is

similarly formulated in terms of the height field z(z,y) and its spatial derivatives

p(m,y) = 2z, and Q(iﬂ,y) = 2y,
J U= Bw.a)P + plp = )+ (0= 2)") + M@+ 5+ 2+ @) dndy,  (10)

where 2, p, and ¢ are estimated separately. In this equation, the first term is the
brightness constraint expressed using the non-linear reflectance map R(p, q), the sec-

ond term is the sntegrability constraint relating the gradient estimates to the height

14



field gradient, and the third term is the usual stabilizer (Horn, 1990). This formula-
tion demonstrates both the application of regularization to a non-linear problem and
the use of mized methods where the function z(z,y) and its derivatives p(z,y) and
g(z,y) are estimated simultaneously.

As a final example, stereo matching (Barnard and Fischler, 1982) can be formu-

lated as

1

[ [12(e+ Sd(e,v),9) ~ Bla — sd(w,9),0)P + A+ &) dody.  (11)

Here, the quantity being estimated is the disparity map d(z,y) which measures the
relative displacement of features between the left and right input images L(z,y) and
R(z,y) (Poggio, Torre and Koch, 1985). This problem is among the most difficult of
the regularized low-level vision problems to solve because the cost functional may have
many local minima. Both simulated annealing (Szeliski and Hinton, 1985; Barnard,
1989) and continuation methods (Witkin, Terzopoulos and Kass, 1987) have been

used to find the global minimum.

4 Numerical solution techniques

In the preceding séction, we have seen how regularization can be used to formulate
the solution of inverse vision problems as the minimization of a functional. To find
the function f(z,y) which attains this minimum on a digital or analog computer, we
must first represent it using a finite-dimensional representation (this process is called
discretization). A convenient way to represent such a function is as a superposition

of basis functions
£(x) = Y asbi(x). (12)
For example, a function represented as its Fourier series can be written in this way.

The two most widely used classes of basis functions for interpolation and approxima-

15



tion are kernel splines and finite elements.
Kernel splines are global functions whose superposition exactly minimizes the
regularized functional. Assuming that our data constraint is of the form f(x;) = d;

or ming Y ;[f(x;) — d;]?, the solution can be written as

o) = D sk =) + 2 fuau(), (13)

which is the superposition of n shifted kernel splines K (x), where n is the number
of data points, and d of polynomial functions gx(x) that span the null space of the
stabilizer (Duchon, 1976; Meinguet, 1979; Boult, 1985a). The null space of a stabilizer
P is the set of functions f for which ||Pf|| = 0. For example, the null space of the
second order stabilizer (3), P(f) = [ f2,dx, is the set of linear functions f(z) = az+b,
which is spanned by the functions go(z) = 1 and ¢;(z) = =.

Deriving equations for the kernel splines is usually only feasible when the regu-
larizer is homogeneous, i.e., p(z,y) = p and 7(z,y) = 7 in (7), or wu(x) = w, in
(6). For simple regularizers (only one order of derivative) in one dimension, the kernel
splines are piecewise polynomial functions (the traditional meaning of splines). In two
or more dimensions, the kernel splines are more complicated functions of r = ||x]|.
For example, the kernel spline K (r) corresponding to the second order stabilizer is
K(r) = r?Inr (Duchon, 1976; Meinguet, 1979; Boult, 1985a). Finding the solution
that minimizes the functional involves solving a dense system of (n + d) equations
in the o; and f;. These solutions are related to kriging methods in geophysics,
which were developed independently based on statistical considerations (Duda, 1982;
Hewett, 1986; Hewett, 1988).

Finite element analysis begins by discretizing the domain into a large number of
contiguous polygonal regions. The function is approximated over each sub-domain
by a low-order polynomial controlled by the values of nodal variables which are usu-

ally placed at the polygon vertices (Zienkiewicz, 1972). We can also view the finite

16



element representation as the superposition of local piecewise polynomial functions
with finite supports (small regions of non-zero value). The resulting discretized en-
ergy function is the sum of many small quadratic terms usually involving two or
three neighboring nodal variables (Terzopoulos, 1986b; Terzopoulos, 1988). While it
is usual to discretize the function so that the nodal variables represent sampled val-
ues of the function, we could also represent the function’s derivatives with additional
nodal variables, which results in mized finite element methods (Harris, 1987; Suter,
1991).

Both kernel splines and finite element models have been used widely in the solution
of regularized vision problems. Kernel splines require solving a smaller number of
equations, i.e., (n + d) equations, where n is the number of data points and d is the
dimensionality of the null space. Kernel splines also give an exact solution, when
such a solution exists. Finite element methods can be formulated using a data-
independent discretization with m variables, where m is proportional to the number
of elements (often, m > n). On regular grids, finite element methods lead to sparser
and more regular sets of equations. They are therefore better suited to massively
parallel solutions and neural network implementations (see Section 5). Some further
comparisons of these two approaches can be found in (Boult, 1985b; Szeliski, 1989).

Once the discretized energy has been specified, it must be minimized using tradi-
tional numerical optimization techniques (Gill, Murray and Wright, 1981; Press et al.,

1992). When the discretized energy is quadratic,

E(u) = %uTAu —bTu + B(0), (14)

we have the choice of iteratively minimizing this energy, or setting the gradient of the

energy to zero and solving the resulting set of equations
Au=bh. (15)

17



In the above equations, A is called the Hessian of the energy function (or stiffness ma-
triz in finite element analysis), and b is called the residual (or force vector). When the
function is not quadratic, the above process must be iterated (using locally quadratic
approximations) until a global or local energy minimum is found.

When the number of variables is small or the Hessian matrix of the system 1is
tightly banded, e.g., for energy-minimizing contours or “snakes” (Kass, Witkin and
Terzopoulos, 1988), a direct solution of the system of equations based on the LU
decomposition of A may be most efficient (Bathe and Wilson, 1976). For larger sys-
tems of equations, e.g., for the two-dimensional surface reconstruction problem, LU
decomposition becomes expensive because of fill in (George and Liu, 1981), and an
iterative minimization algorithm is preferable, even if the energy is quadratic. Sim-
ple iterative minimization algorithms include gradient descent and Gauss-Seidel or
Jacobi relaxation, where the gradient is divided by the diagonal of A to determine
the step size (Watrous, 1994). A more efficient form of iterative minimization is con-
jugate gradient descent, where the direction of descent is modified so that successive
directions are conjugate with respect to the Hessian A (Axelsson and Barker, 1984;
Press et al., 1992).

Even with these enhancements, the iterative solution of regularized problems is
usually slow. This is because iterative techniques are good at reducing the local
(high-frequency) error in the solution, but perform poorly at reducing the global error
(Briggs, 1987). A powerful and widely used solution to this deficiency is to represent
the field (e.g., surface or image) at a variety of resolutions in a multiresolution pyramid
(Rosenfeld, 1984). Iterative relaxation can take place at different levels in the pyramid
(Figure 5). Efficient techniques for coordinating the relaxation at different levels have
been extensively studied in the field of multigrid analysis (Brandt, 1977; Brandt,
1981; Hackbusch and Trottenberg, 1982). Multigrid relaxation has been successfully

applied to a wide range of regularized vision problems (Terzopoulos, 1986a).
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Figure 5: Multiresolution pyramid
The multiple resolution levels are used in the grid correction step and in other more
sophisticated multigrid algorithms. When using a hierarchical basis (Yserentant,

1986), the circles indicate the nodes in the multiresolution basis.
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An alternative to multigrid, which is somewhat easier to implement, is to use a
multiresolution representation to precondition the minimization problem (Axelsson
and Barker, 1984). By using a change of variables or variable scaling, u = Sv, the
reformulated problem will have better convergence properties. The new system of
equations, Av = B, where A = STAS and b = STh, has a lower condition number,
i.e., the ratio of the largest and smallest eigenvalues of A, which determines the
asymptotic rate of convergence of iterative algorithms, is much smaller that that of
the original matrix A.

For regularized problems, a hierarchical basis, which is a multiresolution pyramid
that preserves the number of original samples, works well (Yserentant, 1986; Bank,
Dupont and Yserentant, 1988). Here, the matrix S maps the distributed multireso-
lution representation v back into the original fine-resolution local representation u.
This technique has been used in conjunction with conjugate gradient descent to ac-
celerate the solution of visual reconstruction problems (Szeliski, 1990) and non-linear
problems such as shape from shading (Szeliski, 1991). For certain regularized prob-
lems, e.g., those with sparsely scattered data, the hierarchical basis preconditioner
performs even better than multigrid relaxation.

The above discussion applies to problems which have a single local minimum or
where the solution can be initialized near the global minimum. In cases where there
are many local minima, e.g., in stereo matching, more sophisticated minimization or
search techniques must be used.

One technique that fits in well with the regularization approach to inverse prob-
lems is simulated annealing (Metropolis et al., 1953; Kirkpatrick, Gelatt and Vecchi,
1983; Carnevali, Coletti and Patarnello, 1985; Aarts and Korst, 1994). Instead of al-
ways taking a downhill step in energy, simulated annealing algorithms take a random

(or stochastic) step, with the probability of accepting the step being related to the
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local energy change through a Gibbs or Boltzmann distribution
1
p(Au) =  exp (~ E(Au)/T). (16)

This allows the minimization algorithm to escape from shallow local minima. By
reducing the amount of randomness (controlled by T') over time, the solution can
be forced towards the global minimum (Geman and Geman, 1984). While the usual
formulation of simulated annealing involves making probabilistic state transitions
based on the local probability density, simulated annealing can also be implemented
through diffusion (Geman and Hwang, 1986), i.e., by adding a controlled amount of
random noise to each gradient descent step. Other related stochastic minimization
techniques include iterated conditional modes (ICM) (Besag, 1985) and highest con-
fidence first (HCF) (Chou and Brown, 1990). The combination of regularization, or
related Markov Random Fields (see Section 7), together with stochastic minimization
methods has been called stochastic regularization (Poggio, Torre and Koch, 1985).

Another popular method for finding global minima is continuation, where a non-
convex energy function is replaced by a family of parameterized convex functions
(Dahlquist and Bjork, 1974). For example, in the surface reconstruction problem (8),
each binary modulating term (1 — h; ;) is replaced by a parameterized convex function
g(h;,;) and the line variables are allowed to take on real values (Blake and Zisserman,
1987; Terzopoulos, 1988). Recently, Girosi and Geiger (1991; 1991) have shown that
such continuation methods can be derived directly from the probabilistic formulation
through the use of mean field theory (Parisi, 1988). Continuation methods are also
widely used in neural networks (Hopfield, 1984; Hopfield and Tank, 1985).
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5 Network implementation techniques

The solution of regularized inverse problems, whether in low-level vision, geophysics,
or learning, can require massive amounts of computation. Fortunately, the regu-
larized formulation leads naturally to massively parallel algorithms, which can take
advantage of either digital parallel architectures or dedicated analog networks. In
this section, we explore how such implementations can be developed for low-level
vision problems, starting with parallel relaxation algorithms and their implementa-
tion on parallel computers, and continuing with analog network solutions and their
implementation in analog VLSI.

Neural networks have been used since the beginning of computer vision research
for solving both low- and high-level vision problems (Dev, 1974). In computer vision,
iterative algorithms based on interconnected computing elements have been called
relazation methods, based on earlier work in the numerical solution of partial dif-
ferential equations. Iterative relaxation has been used both in low-level vision, e.g.,
using interacting binary units for cooperative stereo algorithms (Marr and Poggio,
1976; Szeliski and Hinton, 1985) or multistate units for relazation labeling orientation
fields (Hummel and Zucker, 1983), and in higher-level line drawing labeling (Waltz,
1975). The use of numerical relaxation with real-valued units (Horn, 1974; Ullman,
1979; Tkeuchi and Horn, 1981) formed the basis for further developments in varia-
tional and regularized formulations of low-level inverse problems (Horn and Schunck,
1981; Grimson, 1983; Hildreth, 1986).

Relaxation algorithms are inherently massively parallel, and their suitability for
parallel implementation have long been recognized. Parallel implementations did not
become widespread, however, until the advent of commercially available massively
parallel architectures (Potter, 1985; Hillis, 1985). Since then, many of the regu-

larized vision problems have been implemented and tested on parallel architectures
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(Drumbheller and Poggio, 1986; Little, Bulthoff and Poggio, 1987; Little, Blelloch and
Cass, 1989). While these implementations have demonstrated the utility of such ap-
proaches, they remain too expensive and bulky for widespread use in robotic vision
systems.

To overcome these limitations, it has been suggested that special purpose analog
networks could be built out of locally connected passive and active electronic ele-
ments. Horn (1974) suggested using a grid of resistors to solve the inverse lightness
problem. Terzopoulos (1984) designed a simple resistive mesh for solving surface
interpolation problems, and Poggio and Koch (1985) extended these ideas to more
general regularized vision problems. Parallel analog networks have also been designed
for time-varying problems and for more global operations such as moment calculations
(Horn, 1988).

The basic idea behind analog nets for low-level vision is shown in Figure 6. This
circuit (Harris et al., 1990) implements the same function as the discrete form of the
piecewise continuous surface interpolator. The power dissipated by the “vertical”

resistor with conductance (inverse resistance) G = iy 077,

1
P=1V=GV?= 52 (fi; — di)?,

i,

is the same as the first term of (8). The power dissipated by the “horizontal” resistors
whose conductances are G = A(1— h; ;) and G = A(1 —v; ;) corresponds to the second
term in (8). Since voltages in resistive networks converge towards the state of least
power dissipation, the analog circuit effectively minimizes the discrete energy of the
surface interpolator.

In the above example, the gating performed by the line processes was folded into
the horizontal conductances. In practice, such a circuit could be implemented by
putting each resistor in series with a switch (controlled by the line processes h; ; and

v; ;). However, such a hybrid circuit will not solve for the optimal on or off settings
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Jijr

firrj

Figure 6: Analog network for piecewise continuous surface fitting

The input data values d;; drive the voltage sources V;; which are attached to the

1

output voltage nodes f;; through a conductance G = 3

oy j2. The smoothing is per-
formed by the gated horizontal resistors whose conductances are G = A(1 — h; ;) and
G = M1 — v; ;). This circuit dissipates the same energy as (8) and hence finds the

optimal solution for the regularized interpolation problem.
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of the switches. One solution would be to alternate energy (power) minimization in
the analog circuit with binary changes in the line process values which decrease the
overall power dissipation (Koch, Marroquin and Yuille, 1986; Marroquin, Mitter and
Poggio, 1987). Another solution (Koch, Marroquin and Yuille, 1986) is to allow the
line processes to take on real values between 0 and 1 and to use Hopfield and Tank’s
continuation method (Hopfield, 1984; Hopfield and Tank, 1985) to find a solution.
The final network contains additional elements which ensure that in the limit, the
line processes are driven to 0 or 1.

Simpler circuits for discontinuity detection have been proposed by Harris et al.
(1990). Their first circuit uses a resistive fuse which opens the circuit when the
voltage drop across the horizontal resistor exceeds a threshold. Their second circuit
is similar, but uses a finite-gain resistive fuse whose I-V relationship can be derived
from the binary line process formulation using mean-field theory (Geiger and Girosi,
1991). As shown by Geiger and Yuille (1991), this latter circuit is related to other
continuation methods such as graduated non-convexity (Blake and Zisserman, 1987)
and the continuous network of (Koch, Marroquin and Yuille, 1986). For continuous
data, e.g., for vmage segmentation, the networks of Geiger and Yuille can also be
related to anisotropic local diffusion processes (Perona and Malik, 1990), which are
themselves good candidates for analog network implementation.

The ultimate goal of designing analog networks for computer vision is to implement
these networks in high-density analog VLSI (Mead, 1989). The hope is not only
to produce useful low-power high-speed processing chips for robotics applications,
but also to further study the low-level computation performed by biological systems
(Koch, 1989). A number of such circuits have already been implemented and tested.
These include a silicon retina which performs center-surround operations (Mead and
Mahowald, 1988), a motion (optical flow) detection chip (Hutchinson et al., 1988),

and circuits for performing discontinuity detection (Harris, Koch and Luo, 1990;
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Harris et al., 1990) and surface interpolation (Suter and Mansor, 1991). Most of
these circuits rely on regularization to formulate the problem in a fashion amenable
to analog VLSI implementation. A general methodology for analog VLSI design is
presented in (Mead, 1989).

Biologically plausible circuits for solving regularized vision problems have also
been proposed. These include simple chemical networks (Poggio and Koch, 1985),
which could be similar to electronic potentials at the neural level, and more compli-
cated circuits involving pyramidal cells in the visual cortex (Koch, Marroquin and
Yuille, 1986). Whether such neural computation is actually taking place in biological

vision systems remains to be determined experimentally.

6 Other applications of neural nets to vision

The emphasis in the previous sections has been on low-level vision problems which
were formulated using regularization, converted into local, massively parallel iterative
algorithms, and implemented in analog VLSI. This represents only a small fraction
of the computer vision problems which have been solved with neural networks. In
this section, we briefly mention some of these applications. For more examples, the
reader is referred to (Wechsler, 1990), which contains a chapter on neural networks
in vision.

Many low-level vision problems such as curve detection in textured or cluttered
images can be formulated in a local iterative fashion without explicitly resorting to
regularization (Zucker, Dobbins and Iverson, 1989). Local parallel algorithms can
also be devised that do not require any iteration, e.g., a linear shape from shading
algorithm which uses a bank of oriented filters (Pentland, 1989b). Learning has also
been applied to low-level vision problems, such as a neural network which learns

to classify shaded surfaces by curvature sign (Lehky and Sejnowski, 1988), and to
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perform texture grouping (Mozer et al., 1992).

Turning to higher-level vision, neural network algorithms have been devised to seg-
ment an image into constituent parts through global optimization (Pentland, 1989a;
Darrell and Pentland, 1991). Neural network based optimization has also been used to
match graphs representing hierarchical object structures (Mjolsness, Gindi and Anan-
dan, 1989). As a final example, radial basis functions (see Section 10) have been used

to recognize the identity and orientation of simple wire-frame objects (Poggio and

Edelman, 1990).

7 Bayesian interpretation

The solution of inverse problems requires finding a function that is both consistent
with the available measurements and “well behaved” in some other sense. Regular-
ization controls the “behavedness” of the function with smoothness measures or other
norms on the function. An alternative approach is to view the function recovery pro-
cess as a statistical estimation problem, where probabilistic models of the function
and of the measurement process are used to compute statistically optimal estimates.

In such a framework, we model the measurement process as a known linear or
non-linear transformation (e.g., subsampling) corrupted by noise. In the general case,
we can write this measurement model, or sensor model, as a conditional probability
density p(d|f), where f is the unknown function we wish to recover, and d are the
measurements. For example, for two-dimensional surface interpolation, the individual
height measurements d; could be obtained by sampling the function f at locations

(®;,y:) and adding Gaussian noise whose variance is 02.° This leads to a Gaussian

SWe allow the variance of each sample to be different for those cases where we have measurements
of varying reliability, e.g., the output of a stereo matcher where the variance is inversely proportional

to the local contrast. When less is known about the measurement process, we can assume a constant
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probability distribution

pldi]f) = —— exp (—[di -/ (””“yi)]z) . (1)

N \/57?0‘2' 20'1'2

Assuming that the measurement errors are independent, the conditional probability

density p(d|f) can be written as

1
pldlf) = - exp(=Eu(f,d)), (18)
with a data energy
= [ds = f=s,93))?
B(f,d) = 3 2= Lz (19)
and
Zy = (2m)"* ] o:. (20)

=1

The simplest method for recovering the function f, mazimum lLikelihood estima-
tion, is to find the function f which maximizes p(d|f). However, this may not pro-
duce a unique solution, or it may suffer from other problems associated with ill-posed
problems, such as sensitivity to the input. A more powerful approach is Bayesian
estimation, where a prior probability p(f) is hypothesized for the unknown function
(Rumelhart, 1994). We can then use Bayes’ Rule to recover the posterior probability
p(dlf) p(¥)

p(d)

where p(d) is used to normalize the probability density function. Finding the value

p(fld) = (21)

of f which maximizes the probability density produces the mazimum a posterior:
(MAP) estimate.

To develop this model further, let us examine the case of surface reconstruction.
We describe the discrete model here, since it is simpler to explain. For a description

of the continuous model, the pseudo-Markovian field, see (Adler, 1981). To obtain

variance, 07 = o2.
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good surface reconstructions, we need a prior model which favors piecewise smooth
surfaces. A good model for such a surface is a Markov random field (MRF), where
the conditional probability of a value f;; depends only on the state of its immediate
neighbors (Geman and Geman, 1984). Such a distribution can be written as a Gibbs

or Boltzmann distribution

1

p() = 5 exp(=Bolf)/Ty), o (22)

where E,(f) is a prior energy function made up by summing local cligue energies
Ep(f) = Edf),
ceC

C is the set of all cliques (interacting variables), and

Zp = zf:eXP(_Ep(f)/Tp)

is called the partition function (Geman and Geman, 1984). The temperature param-
eter T, controls the “peakedness” of the distribution and, as we will see shortly, is
related to the regularization parameter A. In our surface interpolation example, the
MRF energy for the prior probability is
Ey(f) =2, [(fig = Fier)2(1 = hag) + (Fog — Fijmr)?(1 — viz)), (23)
i,
which represents the summed local smoothness energies of a piecewise continuous
surface.
Combining the sensor model (18) and (19) with the prior model (22) and (23)

using Bayes’ Rule (21), we obtain the posterior probability density function

plf1d) = - exp(~E(f)) (24)
with
B(f) = Balf,d) + = Bylf). (29
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This posterior energy corresponds exactly to the discrete energy of the regularized
surface interpolation problem (8), if we set A = 1/T, and assume appropriate prior
probabilities for the h;; and v; ; line processes (Geiger and Girosi, 1991).°

We therefore have the result that maximizing the a posterior: probability is equiv-
alent to minimizing the regularized energy, under the assumption of Gaussian noise
and certain specific priors (Kimeldorf and Wahba, 1970; Poggio, Torre and Koch,
1985; Marroquin, Mitter and Poggio, 1987; Szeliski, 1987; Szeliski, 1989). Since the
two approaches will produce the same solution, is there any advantage to a proba-
bilistic formulation? Indeed, there are several, which we summarize below and then
examine in more detail.

First, the statistical assumptions corresponding to various smoothness constraints
and data constraints can be explicitly stated and examined (Szeliski, 1989). Second,
alternative estimates based on different cost functions (statistical estimators) can
be computed by finding the function f* which minimizes [ C(f, f*)p(f|d)df, where
C(f, f*) is a cost function (Marroquin, Mitter and Poggio, 1987).” Third, the un-
certainty in the posterior model can be quantified by computing confidence intervals
for the regularized solution. Fourth, Bayesian modeling can be used to optimally
integrate multiple measurements over time (Matthies, Kanade and Szeliski, 1989).
Lastly, optimal values for the unknown regularization parameters, such as A, can be

computed using statistical considerations.®

When we have a uniform data variance o2 = o2, the values of o and T, in (25) are “redundant”

in the sense that scaling both by the same factor results in the same MAP estimate. However,
changing these values affects the variance of the final estimate, which may be an important quantity

to compute (see below).

"The same result cannot in general be obtained by simply modifying the energy functions (Mar-

roquin, Mitter and Poggio, 1987).
8The Bayesian approach does not have any performance disadvantages compared to optimization

(regularization) approaches, since it subsumes the latter techniques. The approach is, however,
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The ability to explicitly state the statistical assumptions underlying regularization
is one of the chief attractions of the Bayesian approach to inverse problems. It has
long been known that regularization is equivalent to assuming a particular covariance
structure for the field being estimated (Kimeldorf and Wahba, 1970; O’Sullivan, 1986;
Terzopoulos, 1986b). By analyzing the power spectrum of such a correlated field, it
can be shown that for simple regularizers (with only one non-zero w,, in (5) or (6)),
the spectrum is fractal, i.e., self-similar over scale (Szeliski, 1987).° The ability to de-
vise better data constraints by systematically modeling the forward transformations
and sources of noise in sensors is of potentially even greater impact (Szeliski, 1989;
Clark and Yuille, 1990). In its simplest form, this shows up as the weighting of mea-
surements by their inverse variance in (4) and (8). In more sophisticated examples,
sensor models can be constructed that solve the correspondence problem between the
data and unknown surface, and reject outlier data points (see Section 9).

Since a Bayesian model in theory specifies a complete posterior distribution, we
are not limited to choosing the most likely (MAP) estimate, which corresponds to the
minimum energy state in a regularized problem. Indeed, for certain low-level vision
problems such as image reconstruction, there is evidence that finding the minimum
variance estimator, which corresponds to the mazimizer of posterior marginals or
MPM, performs better than MAP estimation because it minimizes the average num-

ber of misclassified pixels or the average error, rather than looking for the single most

sometimes more cumbersome to formulate and implement. Some statisticians also cite the need to

devise prior probabilities as a weakness of the Bayesian approach (Wolpert, 1993).

°The energy in (6) for constant wm,(X) = Wy, can be rewritten in the frequency domain using
Pareseval’s Theorem as B(F(w)) = [ |Hp(w)|?|F(w)|?dw where |Hp(w)]? = 3 wp|w|?™ and w is
the multidimensional frequency vector (Szeliski, 1987). The prior distribution for f(x) is therefore
correlated Gaussian noise with a spectrum Sy (w) = |Hp(w)| 2. If only one of the wy, is non-zero, this
spectrum is fractal, i.e., the signal is self-similar (in a stochastic sense) over all scales (Mandelbrot,

1982).
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plausible solution (Poggio, Torre and Koch, 1985; Marroquin, Mitter and Poggio,
1987).19 Alternatively, the cost function whose expected value is being minimized
can be used to bias the solution towards high-level goals, e.g., by preferring distance
underestimates in a collision detection application. The statistical interpretation also
enables the development of alternative optimization algorithms such as highest confi-
dence first'! (HCF) (Chou and Brown, 1990) and mean-field approximations (Geiger
and Girosi, 1991).

Bayesian models based on regularization can be used to assign a confidence or
certainty to the posterior estimate. The simplest way to do this is to draw error
bars or confidence intervals around the estimated solution (Wahba, 1983; Szeliski,
1989; Keren and Werman, 1990; MacKay, 1992a). Figure 7 shows the error bars
corresponding to the interpolating curve with A = 1.0 in Figure 1. Notice how
the error bars increase in areas where the data is less dense, indicating a decreased
certainty in the estimated solution.

In theory, the second order statistics (variance and covariance) of the posterior
estimate could also be computed, but for large systems, this may be computationally
infeasible.'? Consider for example the discrete version of a quadratic energy functional
(14), E(u) = %uTAu — bTu + E(0), whose MAP and minimum variance estimates

are both u* = A~'b, and whose covariance matrix is A~'. While A is usually sparse

10The minimum variance estimator, also known as the minimum mean squared error (MMSE)
estimator, minimizes the expected value of the cost function C(f, f*) = |f — f*|?, i.e., the expected
squared error. The maximizer of posterior marginals independently estimates the mean value for

each component of f (Marroquin, Mitter and Poggio, 1987).
1The highest confidence first algorithm selects the variable which has the highest confidence in

its estimate and freezes its value. It then proceeds in a similar fashion to estimate all of the other

variables (Chou and Brown, 1990).
12However, we can draw random samples from the posterior distribution to illustrate the range of

possible solutions (Szeliski, 1987; MacKay, 1992a).

32



Figure 7: Cubic spline with confidence interval

The confidence envelope was obtained by computing the posterior variance at each
location #; as the solution to the interpolation problem {(z;, §;;02),7 = 1...n}. These
variances were converted into standard deviations o(z) by taking a square root. The
dashed envelopes represent the curves f(z) 4+ 20(z). Values at intermediate points
between original data samples were computed by introducing extra measurements
with infinite variance (Szeliski, 1989). An alternative technique, based on a basis
function expansion, is presented in (MacKay, 1992a). Note how the variance (width

of the envelope) increases away from the known data points.
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and banded, and can thus be stored even for large systems, the covariance matrix
A~1is not, and cannot therefore be explicitly computed for systems with thousands
of variables (such as those which arise in low-level vision).

The existence of a posterior distribution allows the current estimate to be inte-
grated with new measurements in an incremental or recursiwe fashion. Such recursive
estimation algorithms are often based on the Kalman filter formalism (Gelb, 1974).
In such a formulation, the posterior estimate in one iteration p(f*)|d*)) becomes the
prior distribution for the next iteration p(f(*+1)) (where k is the iteration number).
However, careful attention must be paid to the exact choice of formulation in order to
produce computationally feasible algorithms (Szeliski, 1989). This approach has been
used to combine a regularized formulation of optic flow with a sequence of images
taken from a translating camera to obtain depth estimates whose quality improves

over time (Matthies, Kanade and Szeliski, 1989).

& Parameter estimation

The final application of the Bayesian formulation, namely parameter estimation, is of
sufficient importance that we will devote a separate section to it. Indeed, the ability
to estimate the unknown model parameters such as A from the data itself is often
cited as one of the chief attractions of regularization.

Many of the proposed techniques for estimating A do not explicitly rely on a
Bayesian formulation, although most do have some basis in statistics. For exam-
ple, Anderssen and Bloomfield (1974b; 1974a) use spectral techniques to determine
the shape of a smoothing filter. Wahba and her colleagues have developed a num-
ber of techniques called cross-validation and generalized cross-validation (Craven and

Wahba, 1979; Wahba and Wendelberger, 1980; O’Sullivan, 1986). The basic idea is to

fit the function with some of the data points removed, and to then measure the dis-
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crepancy between the fitted curve and the reserved data points. Both oversmoothing
and undersmoothing (which leads to wildly oscillating results) will generate a large
discrepancy. The regularization parameter A is set to the value which minimizes the

generalized cross-validation (GCV) measure
V) = Y w7 () — vl
=1

where fiz)(az) is the curve fit to all of the data points except for 7, and w;(A) is a
weighting function defined in (Craven and Wahba, 1979).
Bayesian approaches to the estimation of A are based on maximizing the proba-

bility of observing the data

p(d) = [ o(d|f)p(f; N

where the shape (tightness) of the p(f; ) distribution is a function of A ((22) with
A = 1/T,). While this may at first seem hopeless since f is a family of functions,
the discrete version of the problem with quadratic functionals corresponds to multi-
variate Gaussian distributions. The resulting minimization can be expressed in terms

of quadratic energy terms and logarithms of matrix determinants (Szeliski, 1989;

MacKay, 1992a; Wolpert, 1993).

9 Robust statistics and the assignment problem

The preceding discussion of Bayesian models has assumed that the prior and sensor
probability distributions are known and accurate. In practice, this is seldom the case.
To overcome this deficiency and to ensure that our algorithms are less semsitive to
gross errors and outliers, we should use ideas from robust statistics (Huber, 1981,
Hampel et al., 1986). In its simplest form, robust statistics suggests that quadratic
penalty terms such as those in (2), (8), or (19) be replaced with functions that penalize
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extreme values (outliers) less severely. We have already seen this concept applied
to discontinuity detection in Section 3, where the quadratic penalty for the inter-
neighbor difference is replaced by a non-quadratic function (Blake and Zisserman,
1987; Geiger and Girosi, 1991). Similar ideas can be applied to the data penalty
terms, which effectively replaces the “springs” tying the data to the surface in (4)
and (19) with “breakable” or “weak” springs of the form

Eq(f,d) = ;g(di — f(@s, i), (26)
where g(z) is a function which penalizes large differences less than a quadratic function
(Szeliski, 1989; Harris, Liu and Mathur, 1991). Robust techniques can also be applied
to the complete surface fitting process itself (Sinha and Schunck, 1990) and to neural
networks learning (Hinton and Nowlan, 1990; Nowlan and Hinton, 1992; Martin
and Connor, 1993). For a more detailed description of alternative robust statistical
techniques, the reader is referred to Huber (1981) and Hampel ef al. (1986). While
traditional robust statistics assume a particular form of long-tailed distribution, an
even more sophisticated approach is possible where the shape of the distribution is
itself adjusted based on the data (Box and Tiao, 1968; Box and Tiao, 1973).

In certain problems, replacing the data constraints with robust error measures is
itself not sufficiently general, since the assignment, or correspondence, between the
data and surface may itself be unknown. Consider for example the fitting of an elastic
3-D parametric surface (Terzopoulos, Witkin and Kass, 1988) to a collection of 3-D
data points.’® Or as a simpler example, consider fitting a deformable 2-D contour
(Kass, Witkin and Terzopoulos, 1988) to a set of points in the plane. This latter
example has a strong connection to an analog formulation of the Travelling Sales-

man Problem (Durbin and Willshaw, 1987) and to the general problem of 2-D curve

13 A version of this problem with known correspondence is the fitting of a digital elevation map

f(z,y) to a set of height measurements d; = f(z;, ¥:).
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matching (Hinton, Williams and Revow, 1992). In such an approach, the pairwise
constraint between each data point and an identified point on the curve is replaced by
a general force field which attracts nearby curve points toward each data point. It can
be shown that this force is equivalent to assuming that the data points were generated
by a noisy sampling of an unknown point along the curve (Durbin, Szeliski and Yuille,
1989), thus giving a Bayesian justification for the heuristic optimization algorithm.
Similar ideas can be used to develop more general sensor models (Szeliski, 1989)
and to convert discrete matching problems into continuous optimization formulations
(Yuille, 1990). These techniques extend the range of applicability of regularization to

problems which may not at first appear to have a suitable structure.

10 Learning as function approximation

In the final part of this chapter, we address the task of learning input-output mapping
from a limited set of examples, which is one of the central problems in current neural
network research.

As has been shown recently by Poggio and Girosi (1990), there exists a deep con-
nection between certain classes of neural networks and the solution of approximation
problems formulated using regularization (see also Cybenko (1994)). In particular,
we will show how radial basis functions arise naturally in the solution of regularized
problems, and how these functions can be implemented using simple neural networks
(Broomhead and Lowe, 1988; Moody and Darken, 1989). These results allows us
to specify the goal of a feedforward neural net, i.e., finding a smooth input-output
mapping with good generalization properties, in a manner that is independent of the
underlying neural network architecture.

Given a collection of input/output pairs {(x;,y:)}, where x; and possibly y; are

vector valued, the learning problem is formulated as constructing a (usually non-
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linear) network which will reproduce y; given x;, and will also generalize well to other
values of x; (as in approximation theory, the meaning of “generalize well” can be
ill-defined). A natural way to view this task is to search for a function f(x) such
that y; = f(x;) which varies smoothly in the vicinity of the x; samples (alternative
formulations may involve finding a function f(x,y) such that f(x;,y;) = 0, but this
requires the system to be given negative examples as well). The problem of learning
can thus be formulated as one of finding a good approximating function.

The problem of extrapolating a complete multidimensional function from a num-
ber of discrete samples has been extensively studied in approximation theory (Lau-
rent, 1972). A simple example of this is the two-dimensional surface reconstruction
problem which we studied in Section 3. A popular class of approximating functions
is based on the superposition of shifted radial bases G(||x||) and a small number of

polynomial functions gx(x),

flx) = anaiG(llx—fz-H) +k§_:ﬁk%(3<) (27)

(Powell, 1987) (note that f, a;, and B can be vector valued).'* When the number
of data points is not too large, it is customary to center one basis function on each
data point €; = x;. Conditions under which an interpolating surface exists for such a
collection of radial bases and data points have been derived (Micchelli, 1986).

The choice of basis functions can be made based on previous experience or com-
putational simplicity, or it can be derived directly from a regularized formulation of
the problem. For example, the generalized splines, which we studied in Section 2,
have a kernel spline representation which uses radial bases (Duchon, 1976; Meinguet,
1979) (see (13) in Section 4). In general, the shape of the basis function G(||x||) and

of the polynomial functions gz(x) can be derived from the Green’s function and the

4The g serve to model the global characteristics of the solution, e.g. a pervasive constant, linear

or quadratic bias.
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null space, respectively, of the regularization operator P (Poggio and Girosi, 1989).15
A particularly interesting example is the choice of wy,, = ¢*™/(m!2™),m =0,..., 00

?

in (5) which results in Gaussian radial bases with a standard deviation of &

2
O(l1xl) = exp ~15
(Yuille and Grzywacz, 1988).1°

Radial basis functions can be directly implemented by a three-layer neural net-
work, as shown in Figure 8 (Broomhead and Lowe, 1988; Moody and Darken, 1989).
When the basis centers §; are fixed, the solution for the output weights a; can be
computed using least squares fitting (Broomhead and Lowe, 1988). When the cen-
ters are variable and to be determined during learning, gradient descent techniques
or other non-linear optimization techniques become necessary (Moody and Darken,
1989). This latter approach can take advantage of local parallelism and is closer in
structure to other iterative learning algorithms such as backpropagation (Rumelhart,
Hinton and Williams, 1986). In addition to the output weights and the basis centers,
the widths of the basis functions can also be adjusted (Moody and Darken, 1989),
and the number of basis units can be modified during learning (Platt, 1991). The

most general version of radial basis functions are hyper basis functions (HBF), or

reqularization networks, which use a combination of different sized kernels, movable

5When the w,, are constant functions, the Fourier transform of the basis function G(x) is

00 -1
> ol
m=0

(this is identical to the power spectrum of the prior model), and the null space is the solution to the

partial differential equation

> wm| D™ f(x)[* = 0.

m=0
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] is the Taylor series expansion of [exp

39



Figure 8: Radial basis function network.

The input vector x is subtracted from the radial basis function centers £; and passed
through the radial basis functions G(||x — &;||). The outputs of these functions are
then summed with weights a; to produce the output f(x) = >7-; a;G(||lx—&;||). The
units and connections corresponding to g and (3 are not shown. For a vector valued

output f, the a; would also be vector valued.
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centers, and weighted norms of the form
Ix|3v = x*WTWx

(Poggio and Girosi, 1990). The weighting matrices W, which are themselves adjusted
during learning, allow the radial basis units to scale and adjust to important directions
in the input space.

Since radial basis functions can be implemented as neural networks, and since
they also correspond to the solutions of certain regularized problems, we can con-
clude that such networks provide solutions to the learning problem formulated using
regularization (Poggio and Girosi, 1990). In fact, it can be shown that radial basis
function networks with fixed centers have the best approzimation property (Girosi and
Poggio, 1989), i.e., given a parametrized family of radial basis function networks with
a fixed number of centers, there is a single network which is the best (closest) approx-
imation to any given continuous function. However, even better approximations can
sometimes be obtained by having several competing models and allowing the data
itself to dictate which model to apply (Box and Tiao, 1973; MacKay, 1992a).

Regularization has also been applied to other aspects of neural networks. A sim-
ple form of regularization is adding a weight decay term during the learning process,
which can significantly speed up learning rates (Nowlan and Hinton, 1992; Nowlan,
1992; Weigend, Rumelhart and Huberman, 1991). A Bayesian choice of the weight
decay parameters improves the performance even more (Nowlan and Hinton, 1992;
MacKay, 1992b). When the weights in a neural network have some spatial meaning
and inherent regularity or smoothness, such as the weights describing formants in a
short-time periodogram, spatial regularization can be applied directly to the weight
values themselves (Lang, 1989). Extracting regularities from temporal sequences
using units with different time constants can be viewed as a form of temporal regu-

larization (Mozer, 1992). The learning of spatial regularities, such as center-surround
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structures (Linsker, 1988) or the neighborhood connections in stereo matching (Becker
and Hinton, 1989; Becker and Hinton, 1992) can be viewed as examples of regulariza-
tion principles being learned ab initio. Finally, the appropriate amount and order of
regularization to be applied, e.g., in discontinuity detection, can also be learned from

examples (Aloimonos and Shulman, 1989; Becker and Hinton, 1992).

11 Discussion and Summary

As we have seen, regularization is an important component of many neural network
solutions to real-world problems. It arises from two fundamentally different sources of
regularity. The first source is an underlying smoothness in the continuous field being
estimated, for example the (piecewise) smooth variation in depth and orientation in
an image (Section 3). The application of regularization in this context leads to the
development of massively parallel algorithms based on a discrete regular sampling
of the field (Section 4). These algorithms can be implemented as locally connected
networks in analog VLSI (Section 5).

The second application of regularization is in the learning of general nonlinear
input-output mappings for which neural nets are well suited. Here the regularity
is in the smooth variation of outputs in the neighborhood of input samples, which
is one way to characterize the generalization properties of such networks (Section
10). In this case, however, the space in which the mapping is embedded is high
dimensional (n-dimensional, where n is the number of input units), as opposed to the
two-dimensional spaces typical of visual processing problems.

Underlying both of these applications is a Bayesian interpretation of regularization
(Section 7), which can be used to quantify the uncertainty in the estimates produced
by regularization, to develop alternative minimization algorithms, and to estimate

unknown model parameters (Section 8). The Bayesian approach also permits the use
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of more reliable statistical techniques such as robust estimation (Section 9).

While regularization has already proven to be extremely useful in these contexts,
it must be further generalized and developed to work in more real-world situations.
In particular, the existence of discontinuities in smooth mappings and the presence
of outliers in sampled data are both ubiquitous. In visual processing, such extensions
to standard regularization theory are becoming more widely used. In learning theory,
since regularization is a relatively recent addition, such extensions have yet to be
explored. The addition of robust regression techniques (Huber, 1981) to learning
should be relatively straightforward and should improve performance on noisy training
sets (Martin and Connor, 1993). However, applying discontinuity detection, which is
already a difficult problem in 2-D, to the high-dimensional spaces typical in neural
networks may prove to be difficult.

Another issue that comes up very often in the context of regularization is the
question of scale and of multiresolution representations. In low-level visual process-
ing, multiresolution representations have been successfully used to speed up relax-
ation algorithms and to find good global solutions (Section 4). In neural network
learning, multiresolution techniques have also been developed (Mjolsness, Garrett
and Miranker, 1991; Moody, 1989). Finding useful multiresolution representations
may be one of the keys to efficiently representing correlations and mappings in the
high-dimensional spaces typical in neural networks.

Finally, while regulagization has usually been applied to static problems, it has
the potential to be even more useful in the context of real-time processing. For ex-
ample, we can view the incremental estimation of depth fields from motion sequences
(Matthies, Kanade and Szeliski, 1989) as a type of “regularization in space-time”
(Szeliski, 1989). Similar concepts could be developed for neural networks which must
process dynamic sequences of data or perform on-line learning and adaptation.

To summarize, regularization is a powerful technique for solving ill-posed inverse
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problems such as visual reconstruction and multidimensional function approximation.
It provides a coherent framework for solving certain vision problems using parallel
algorithms and networks, and for specifying the task of neural network learning in
an architecture independent manner. It also has a rigorous justification, in term of
Bayesian models, that can be used to reason about the quality of the solutions and
to improve the estimation techniques. It thus forms a very useful tool for specifying,

analyzing, and solving many problems related to neural network processing.
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