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Motion Estimation with Quadtree Splines

Richard Szeliski, Member, IEEE Computer Society, and Heung-Yeung Shum

Abstract—This paper presents a motion estimation algorithm based on a new multiresolution representation, the quadiree spline.
This representation describes the motion field as a collection of smoothly connected patches of varying size, where the patch size is
automatically adapted to the complexity of the underlying motion. The topology of the patches is determined by a quadtree data
structure, and both split and merge techniques are developed for estimating this spatial subdivision. The quadtree spline is
implemented using another novel representation, the adaptive hierarchical basis spline, and combines the advantages of adaptively-
sized correlation windows with the speedups obtained with hierarchical basis preconditioners. Results are presented on some

standard motion sequences.

Index Terms—Motion analysis, image registration, optical flow, splines, quadtrees, local parametric motion models, multiresolution
analysis, image pyramids, hierarchical basis functions, motion segmentation.

1 INTRODUCTION

NE of the fundamental tradeoffs in designing motion

estimation and stereo matching algorithms is selecting
the size of the windows or filters to be used in comparing
portions of corresponding images. Using larger windows
leads to better noise immunity through averaging and can
also disambiguate potential matches in areas of weak tex-
ture or potential aperture problems. However, larger win-
dows fail where they straddle motion or depth discontinui-
ties, or in general where the motion or disparity varies sig-
nificantly within the window.

Many techniques have been devised to deal with this
problem, e.g., using adaptively-sized windows in stereo
matching. In this paper, we present a technique for recur-
sively subdividing an image into square patches of varying
size and then matching these patches to subsequent frames
in a way which preserves inter-patch motion continuity.
Our technique is an extension of the spline-based image regis-
tration technigue presented in [55], [56], and thus has the
same advantages when compared to correlation-based ap-
proaches, i.e., lower computational cost and the ability to
handle large image deformations.

As a first step, we show how using hierarchical basis
splines instead of regular splines can lead to faster conver-
gence and qualitatively perform a smoothing function
similar to regularization. Then, we show how selectively
setting certain nodes in the hierarchical basis to zero leads
to an adaptive hierarchical basis. We can use this idea to build
a spline defined over a quadtree domain, i.e.,, a quadtree
spline. To determine the size of the patches in our adaptive
basis, i.e., the shape of the quadiree, we develop both split
and merge techniques based on the residual errors in the
current optical flow estimates.

While this paper deals primarily with motion estimation
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(also known as image registration or optical flow computa-
tion), the techniques developed here can equally well be
applied to stereo matching. In our framework, we view
stereo as a special case of motion estimation where the
epipolar geometry (corresponding lines) are known, thus re-
ducing a two-dimensional search space at each pixel to a
one-dimensional space. Our techniques can also be used as
part of a direct method which simultaneously solves for pro-
jective depth and camera motion [55].

The adaptive hierarchical basis splines developed in this
paper are equivalent to adaptively subdividing global
parametric motion regions while maintaining continuity
between adjacent patches. We can therefore implement a
continuum of motion models ranging from a single global
(e.g., affine) motion, all the way to a completely general
local motion, as warranted by the data in a given image
sequence.

The motion estimation algorithms developed in this pa-
per can be used in a number of applications. Examples in-
clude motion compensation for video compression, the ex-
traction of 3D scene geometry and camera motion, robot
navigation, and the registration of multiple images, e.g., for
medical applications. Feature tracking algorithms based on
our techniques [57] can be used in human interface appli-
cations such as gaze tracking or expression detection, in
addition to classical robotics applications.

The remainder of the paper is structured as follows. Sec-
tion 2 presents a review of relevant previous work. Section
3 gives the general problem formulation for image registra-
tion. Section 4 reviews the spline-based motion estimation
algorithm. Section 5 shows how hierarchical basis functions
can be used to accelerate and regularize spline-based flow
estimation. Section 6 presents our novel quadtree splines
and discusses how their shape can be estimated using both
split and merge techniques. Section 7 discusses the relation-
ship of adaptive hierarchical basis splines to multiscale
Markov Random Fields. Section 8 presents experimental
results based on some commonly used motion test se-
quences. We close with a comparison of our approach to
previous algorithms and a discussion of future work.
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2 PREvious WORK

Motion estimation has long been one of the most actively
studied areas of computer vision and image processing [2],
[12]. Motion estimation algorithms include optical flow
(general motion) estimators, global parametric motion es-
timators, constrained motion. estimators (direct methods),
stereo and multiframe stereo, hierarchical (coarse-to-fine)
methods, feature trackers, and feature-based registration
techniques. We will use this rough taxonomy to briefly re-
view previous work, while recognizing that these algo-
rithms overlap and that many algorithms use ideas from
several of these categories.

The general motion estimation problem is often called
optical flow recovery [24]. This involves estimating an inde-
pendent displacement vector for each pixel in an image.
Approaches to this problem include gradient-based ap-
proaches based on the brightness constraint [24], [30], [36],
correlation-based techniques such as the sum of squared dif-
ferences (SSD) [3], spatio-temporal filtering [1], [22], [18],
[63], and regularization [24], [23], [43]. Nagel [36], Anandan
[3], and Otte and Nagel [41] provide comparisons and de-
rive relations between different techniques, while Barron et
al. [6] provide some numerical comparisons.

Global motion estimators [29], [7] use a simple flow field
model parameterized by a small number of unknown vari-
ables. Examples of global motion models include affine and
quadratic flow fields. In the taxonomy of Bergen et al. [7],
these fields are called parametric motion models, since they
can be used locally as well (e.g., affine flow can be esti-
mated at every pixel). The spline-based flow fields we de-
scribe in the next section can be viewed as local parametric
models, since the flow within each spline patch is defined
by a small number of control vertices.

Global methods are most useful' when the scene has a
particularly simple form, e.g., when the scene is planar.
These methods can be extended to more complex scenes,
however, by using a collection of global motion models. For
example, each pixel can be associated with one of several
global motion hypotheses, resulting in a layered motion
model [62], [26], [17], [10]. Alternatively, a single image can
be recursively subdivided into smaller parametric motion
patches based on estimates of the current residual error in
the flow estimate [35]. Our approach is similar to this latter
work, except that it preserves inter-patch motion continu-
ity, and uses both split and merge techniques.

Stereo matching [5], [45], [15] is traditionally considered
as a separate sub-discipline within computer vision (and, of
course, photogrammetry), but there are strong connections
between it and motion estimation. Stereo can be viewed as
a simplified version of constraihed motion estimation
where the epipolar geometry is given, so that each flow vector
is constrained to lie along a known line. While stereo is tra-
ditionally performed on pairs of images, more recent algo-
rithms use sequences of images (multiframe stereo or motion
stereo) [11], [34], [39]. The idea of using adaptive window
sizes in stereo [38], [40] is similar in spirit to the idea used
in this paper, although their algorithm has a much higher
computational complexity.

Hierarchical (coarse-to-fine) matching algorithms have a
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long history of use both in stereo matching [45], [64] and in
motion estimation [16], [3], [51], [7]. Hierarchical algorithms
first solve the matching problem on smaller, lower-
resolution images and then use these to initialize higher-
resolution estimates. Their advantages include both in-
creased computational efficiency and the ability to find
better solutions by avoiding local minima.

The algorithm presented in this paper is also related to
patch-based feature trackers [30], [46], [61]. It differs from
these previous approaches in that we use patches of vary-
ing size, we completely tile the image with patches, and we
have no motion discontinuities across patch boundaries.
Our motion estimator can be used as a parallel, adaptive
feature tracker by selecting spline control vertices with low
uncertainty in both motion components [57]. )

3 GENERAL PROBLEM FORMULATION

The general motion estimation problem can be formulated
as follows. We are given a sequence of images I,(x, ) which
we assume were formed by locally displacing a reference
image I(x, y) with horizontal and vertical displacement
fields' ux, y) and vyx, y), ie.,

Lix +uy, vy +v) =Ix, ). (1)
Each individual image is assumed to be corrupted with
uniform white Gaussian noise. We also ignore possible
occlusions (“foldovers”) and disocclusions in the warped
images.

Given such a sequence of images, we wish to simultane-
ously recover the displacement fields (1, v,) and the refer-
ence image I(x, 1). The maximum likelihood solution to this
problem is well known and consists of minimizing the
squared error

;”[It("+”wy+vt)-1(x/y)]2dxdy~ @

In practice, we are usually given a set of discretely sampled
images, so we replace the above integrals with summations
over the set of pixels {(x;, y,)}.

If the displacement fields u; and v; at different times are
independent of each other and the reference intensity image
I(x, y) is assumed to be known, the above minimization
problem decomposes into a set of independent minimiza-
tions, one for each frame. For now, we will assume that this
is the case, and only study the two frame problem, which
can be rewritten as

2
E({ui, vi}) = Z [I](xl + U, Y+ 211.) - Io(xi,yi)] . 3)
t
This equation is called the sum of squared differences (SSD)
formula [3]. Expanding I; in a first order Taylor series expan-

sion in (4; v;) yields the the image brightness constraint [24]

E({uifvi}) ~ Z[AI + L+ vai]z,

1. We will use the terms displacement field, flow field, and motion estimate
interchangeably.
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where Al =1, — [jand VI; =

The squared pixel error function (3) is by no means the
only possible optimization criterion. For example, it can be
generalized to account for photometric varlahon (global
brightness and contrast changes), using

E’({ui,vi}) = Z[Il(xi +u,y; + 7’1) - CIO(xi,yi) + b]z,

i

I, L) is the intensity gradient.

where b and c are the (per-frame) brightness and contrast
correction terms [29], [21], [19], [37]. Both of these pa-
rameters can be estimated concurrently with the flow
field at little additional cost. Their inclusion is most use-
ful in situations where the photometry can change be-
tween successive views (e.g., when the images are not
acquired concurrently).

Another way to generalize the criterion is to replace the
squaring function with a non-quadratic penalty function,
which results in a robust motion estimator which can reject
outlier measurements [8], [10], [9]. Another possibility is to
weight each squared error term with a factor proportional to

1
o +o VI

where ¢ and O'i are the variances of the image and de-
rivative noise, which can compensate for noise in the image
derivative computation [50]. To. further increase noise im-
munity, the intensity images used in (3) can be replaced by
filtered images [13].

The above minimization problem typically has many lo-
cal minima. Several techniques are commonly used to find
a more globally optimal estimate. For example, the SSD
algorithm performs the summation at each pixel over an
m x m window (typically 5 x 5) [3]. More recent variations
use adaptive windows [38] and multiple. frames [39].
Regularization-based algorithms add smoothness con-
straints on the u and v fields to obtain good solutions [24],
[23], [43]. Finally, multiscale or hierarchical (coarse-to-fine)
techniques are often used to speed the search for the opti-
mum displacement estimate and to avoid local minima.

The choice of representation for the (u, v) field also
strongly influences the performance of the motion estima-
tion algorithm. The most commonly made choice is to as-
sign an independent estimate at each pixel (u;, v), but
global motion descriptors are also possible [29], [7], [55].
One can observe, however, that motion estimates at indi-
vidual pixels are never truly independent. Both local cor-
relation windows (as in SSD) and global smoothness con-
straints aggregate information from neighboring pixels. The
resulting displacement estimates are therefore highly cor-
related. While it is possible to analyze the correlations in-
duced by overlapping windows [34] and regularization
[52], the procedures are cumbersome and rarely used. For
these reasons, we have chosen in our work to represent the
motion field as a spline, which is a representation which
falls in between per-pixel motion estimates and purely
global motion estimates.
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4 SpLINE-BASED FLOW ESTIMATION

Our approach is to represent the displacements fields
u(x, y) and v(x, ) as two-dimensional splines controlled by a

smaller number of displacement estimates ﬁj and z?j which

lie on a coarser spline control grid (Fig. 1). Notice that we use
j to refer to spline control vertices while we continue to use
i to index pixels. The value for the displacement at a pixel i
can be written as

Z 7B

where the By(x, y) are called the basis functions and are only
non-zero over a small interval (finite support). We call the

z’yz 1/% or u - Zu]wUl (4)

wy; = B(x;, y;) weights to emphasize that the (u;, v;) are known

hnear combinations of the (u /0 ])

L

Fig. 1. Displacement spline: The spline control vertices {(ﬁj,ﬁj)} are

shown as circles (o) and the pixel displacements {(u;
pluses (+).

v)} are shown as

In our current implementation, the basis functions are
spatially shifted versions of each other, i.e.,

Bi(x,y) = B(x =2,y - ;).
We have studied five different interpolation functions:
1) block,
2) linear on squares,
3) linear on triangles,

4) bilinear, and

5) biquadratic [55].
In practice, we most often use the bilinear bases. We also
impose the condition that the spline control grid is a regular
subsampling of the pixel grid, %; =mx;, §; = my,, so that
each set of m x m pixels corresponds to a single spline
patch.
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4.1 Function Minimization
To recover the local spline-based flow parameters, we need

to minimize the cost function (3) with respect to the {u i, 0 ]}

We do this using a variant of the Levenberg-Marquardt
iterative non-linear minimization technique [44]. First, we
compute the gradient of E in (3) with respect to each of the

parameters #; and 9,

‘ = 226
= ZZeGywi]-,

®)

where

e =T 06+ yi + 0) — Iy, ) (6)

is the intensity error at pixel i,

(Gix,G,y) = Vll(xi U, Y 'Ui) 7

1

is the intensity gradient of I; at the displaced position for
pixel i, and the wj; are the sampled values of the spline basis
function (4). Algorithmically, we compute the above gradi-

ents by first forming the displacement vector for each pixel
(u;, v;) using (4), then computing the resampled intensity
and gradient values of I; at (x,v]) = (x; + 1, y, +v;), com-
puting ¢, and finally incrementing the g; and g;’ values of
all control vertices affecting that pixel [55].

For the Levenberg-Marquardt algorithm, we also require
the approximate Hessian matrix A where the second-

derivative terms are left out. The matrix A contains entries
of the form

“ZEau au‘ —22% zk( )
a;‘k” = ]k 22&[ W = waywlkG G/

—22&, W—ZZ% ile1)

(8)

The entries of A can be computed at the same time as the
energy gradients.

The Levenberg-Marquardt algorithm proceeds by com-
puting an increment Au to the current displacement esti-
mate u which satisfies

(A+ ADAu =-g 9

where u is the vector of concatenated dlsplacement esti-

mates { i, ].}, g is the vector of concatenated energy gradi- -

ents {g;‘, g;’}, and A is a stabilization factor which varies

over time [44]. To solve this large, sparse system of linear
equations, we use preconditioned gradient descent

u=-0Bg= —ocg ao
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where B = A + A1, and A = block_diag(A) is the set of 2 x 2
block diagonal matrices defined in (9) with j = k, and

g = B'g is called the preconditioned residual vector.” An op-

timal value for o can be computed at each iteration by
minimizing
AE(ard) ~ o’d'Ad - 20d"g,

ie., by setting o= (d - g)/ (d"Ad), where d = g is the direc-
tion vector for the current step. See [55] for more details on
our algorithm implementation.

To handle larger displacements, we run our algorithm in
a coarse-to-fine (hierarchical) fashion. A Gaussian image
pyramid is first computed using an iterated separable 3-
point (%4, %, %) filter [13]. We then run the algorithm on one
of the smaller pyramid levels, and use the resulting flow
estimates to initialize the next finer level (using bilinear
interpolation and doubling the displacement magnitudes).

Fig. 2 shows an example of the flow estimates produced
by our technique. The input image is 256 x 240 pixels, and
the flow is displayed on a 30 x 28 grid. We show the results
of using a three-level pyramid, nine iterations at each level,
and with three different patch sizes, m = 64, m =16, and m =
4. As we can see, using patches that are too large result in
flow estimates which are too smooth, while using patches
that are too small result in noisy estimates. (This latter
problem could potentially be fixed by adding regulariza-
tion, but at the cost of increased iterations.) To overcome
this problem, we need a technique which automatically
selects the best patch size in each region of the image. This
is the idea we will develop in the next two sections.

(c) (d)
Fig. 2. Example of general flow computation: (a) input image, (b)—(d)
flow estimates for m =64, 16, and 4.

2. Preconditioning means adjusting the descent direction to accelerate the
convergence, e.g., by premultiplying it by an approximate inverse of A [4], [44].
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5 HIERARCHICAL BASIS SPLINES

Regularized problems often require many iterations to
propagate information from regions with high certainty
(textures or edges) to regions with little information
(uniform intensities). Several techniques have been devel-
.oped to overcome this problem. Coarse-to-fine techniques
[45], [3] can help, but often don’t converge as quickly to the
optimal solution as multigrid techniques [60]. Conjugate
gradient descent can also be used, especially for non-linear
problems such as shape-from-shading [49]. Perhaps the
most effective technique is a combination of conjugate gra-
dient descent with hierarchical basis functions [65], which
has been applied both to interpolation problems in stereo
matching {53] and to shape-from-shading [54].

Hierarchical basis functions are based on using a py-
ramidal representation for the data [13], where the number
of nodes in the pyramid is equal to the original number of
nodes at the finest level (Fig. 3). To convert from the hierar-
chical basis representation to the usual fine-level represen-
tation (which is called the nodal basis representation [65]),
we start at the coarsest (smallest) level of the pyramid and
interpolate the values at this level, thus doubling the reso-
lution. These interpolated values are then added to the hi-
erarchical representation values at the next lower level, and
the process is repeated until the nodal representation is
obtained.’ This process can be written algorithmically as

procedure S
for I = L - 1 down to 1
for 7 € M,
1 _ Al ~  Al+1
u; = +Zkeijjkuk

end S.

In this procedure, each node is assigned to one of the level
collections M, (the circles in Fig. 3). Each node also has a

number of “parent nodes” 3\6 on the next coarser level that
contribute to its value during the interpolation process. The
z'Izjk are the weighting functions that depend on the par-

ticular choice of interpolation function. For the examples
shown in this paper, we use bilinear interpolation, since
previous experiments suggest that this is a reasonable
choice for the interpolator [53].

We can write the above process algebraically as

u=Si=88,..5, i, an

with
1 ifj=k :
(S,)],k =Wy, ifje Mandke N,
0  otherwise
and i is the hierarchical basis representation.
Using a hierarchical basis representation for the flow

field is equivalent to using ss” as a preconditioner, ie.,

3. Hierarchical basis splines are therefore a degenerate (nonorthogonal)
form of wavelets [32] with extremely compact support and inverses. The
reconstruction process is also similar to the reconstruction of an image
from a band-pass pyramid, except that the band-pass levels are not fully
populated.
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g = SS”g [4], [53]. The transformation SS can be used as a
preconditioner because the influence of hierarchical bases

at coarser levels (which are obtained from the §” operation)
are propagated to the nodal basis at the fine level through
the S operation. To evaluate ST, i.e, to convert from the
nodal basis representation to the hierarchical basis repre-
sentation, we use the procedure

procedure ST
for 1 =1to L -1

for k € M,y

oty ~ Al
- Y JikeN Wit

end ST,

i.e., a bottom-up sweep is used to aggregate gradient values
at coarser levels.

AN
/YN
coarse / =
N

_ /
medium y \ =2
AN
/] \
L L L L L

N\

Fig. 3. Hierarchical basis representation. The multiple resolution levels
are a schematic representation of the hierarchical basis spline. The
circles indicate the nodes in the hierarchical basis. The total number of
circles is equal to the number of variables at the finest (/ = 1) level of
the pyramid.

When combining hierarchical basis preconditioning with
the block diagonal preconditioning in (10), we have several
choices. We can apply the block diagonal preconditioning
first, g = SSTB_lg, or second, g= B’lssTg, or we can
interleave the two preconditioners §=SB'S’g, or

g =B"ss"Bg, where B = BY. The latter two operations
correspond to well-defined preconditioners (i.e., optimiza-
tion under a change of basis), while the first two are easier
to implement. In our current work, we use the first form,
i.e., we apply block preconditioning first, and then use
sweep up and then down the hierarchical basis pyramid to
smooth the residual. In future work, we plan to develop
optimal combinations of block diagonal and hierarchical
basis preconditioning.
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To summarize our algorithm (Fig. 4), we keep both the
hierarchical and nodal representations, and map between
the two as required. For accumulating the gradients re-
quired in (5) and (9), we compute the image flows and the
derivatives with respect to the parameters in the nodal ba-
sis. We then use the hierarchical basis to smooth the resid-
ual (gradient) vector g before selecting a new conjugate
direction and computing the optimal step size. Using this
technique not only makes the convergence faster but also
propagates local corrections over the whole domain, which
tends to smooth the resulting flow significantly.

0. By=0,d,=0

1. g,=-VE(u)

2+ g, =525"B g,

3. ﬁn = gn B / gn—l "8n-1

4. dn =8~ ﬁndn~1

5 a,=d,-g,/dAd,

6. w,=u,+od,

7. increment 7, loop to 1.

+ S =mapping from hierarchical to nodal basis,

B = block_diag(A),
Z = 0/1 matrix for quadtree spline basis (Section 6).

Fig. 4. Hierarchical basis preconditioned conjugate gradient algorithm.

To demonstrate the performance improvements avail-
able with hierarchical basis functions, we use as our exam-
ple the Square 2 sequence, which is part of the data set
used by Barron et al. [6]. Fig. 5a shows one image in the
sequence, while Fig. 5b shows the convergence rates for
regular gradient descent (GD), coarse-to-fine estimation
(CTF, - three levels), and preconditioning with hierarchical
basis functions (HBPCG, three levels), with different

amounts of regularization (4, = 0, 100, 1000).4 As we can see

from these results, adding more regularization results in a
more accurate solution (this is because the true flow is a
single constant value), using coarse to fine is quicker than
single-level relaxation, and hijerarchical basis precondi-
tioning is faster than coarse-to-fine relaxation. It is inter-
esting to note that using hierarchical basis functions even
without regularization quickly smooths out the solution
and outperforms coarse-to-fine without regularization.

6 QUADTREE (ADAPTIVE RESOLUTION) SPLINES

While hierarchical basis splines can help accelerate an esti-
mation algorithm or even to add extra smoothness to the
solution, they do not in themselves solve the problem of
having adaptively-sized patches. For this, we will use the
idea of quadtree splines, i.e., splines defined on a quadtree
domain. A quadtree is a 2D representation built by recur-
sively subdividing rectangles into four pieces (Fig. 6) [47].
The basic concept of a quadtree spline is to define a con-
tinuous function over a quadtree domain by interpolating
numeric values at the corners of each spline leaf cell

4. The errors are measured in degrees, as in [6].
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(square). However, because cells are non-uniformly subdi-
vided, cracks or first-order discontinuities in the interpo-
lated function may arise [47]. Fig. 6b shows an illustration
of this, where each vertex in the a quadtree spline is al-
lowed to move independently, thereby causing tears in the
overall motion field.

Square 2 convergence
T T

o1 1 L L

15
iteration

(a) (b)
Fig. 5. Square 2 sample image and convergence plot: (a) input image,
(b) convergence plot (error vs. iteration number). The jumps in energy
occur at changes in level in the coarse-to-fine (CTF) algorithm.

(@) (b)

Fig. 6. Quadtree associated with spline function, and potential cracks in
quadtree spline: (a) the nodes with filled circles (¢) are free variables in
the associated restricted hierarchical basis (Fig. 7), whereas the open
circles (o) must be interpolated from their ancestors; (b) potential
cracks in a simpler quadtree spline are shown as shaded areas. If each
vertex is allowed to move independently, discontinuities can appear in
the motion field.

Several crack-filling strategies have been proposed [47].
The simplest strategy is to simply replace the values at the
nodes along a crack edge (the white circles in Fig. 6) with
the average values of its two parent nodes along the edge.
This is the strategy we used in developing octree splines for
the representation of multi-resolution distance maps in 3D
pose estimation problems [28].

When the problem is one of iteratively estimating the
values on the nodes in the quadtree spline, enforcing the
crack-filling rule becomes more complicated. A useful
strategy, which we developed for estimating 3D displace-
ment fields in elastic medical image registration [58], is to
use a hierarchical basis and to selectively zero out nodes in
this basis. Fig. 7 shows the nodes in a hierarchical basis rep-
resentation, where some nodes have been colored black (e)
and others white (o). When we set the values of the white
nodes to zero in the hierarchical basis and then recompute
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the nodal basis using S, the resulting spline has the desired
continuity, i.e., nodes along longer edges are the averages
of their parents..

M
/TN N

coarse

medium /

Fig. 7. Restricted (adaptive) hierarchical basis representation. The
circles indicate the nodes in the hierarchical basis. Filled circles (») are
free variables in the quadtree spline, while open circles (o) must be
zero (see Fig. 6).

The formulation of the quadtree spline in terms of an
adaptive hierarchical basis, i.e., a basis in which some nodes
are set to zero, has several advantages. First, it is very easy
to implement, simply requiring a selective zeroing step
between the S” and § operations (algebraically, we write
g =528"g, where Z is a diagonal matrix with 1s and 0s on

the diagonal—see Fig. 4).° Second, it generalizes to splines

of arbitrary order, e.g., we can build a C' quadtree spline
based on quadratic B-splines using adaptive hierarchical
basis functions. However, for higher-order splines, even
more nodes have to be zeroed in order to ensure that finer
level splines do not affect nearby coarser (undivided) cells.
Third, as we will discuss in the next section, the adaptive
hierarchical basis idea is even more general than the quad-
tree spline, and corresponds to a specific kind of multi-
resolution prior model.

The quadtree spline as described here ensures that the
function within any leaf cell (square domain) has a simple
form (single polynomial description, no spurious ripples).
An alternative way of interpreting the quadtree in Fig. 6 is
that it specifies the minimum degree of complexity in each
cell, i.e., that each square is guaranteed to have its full de-
grees of freedom (e.g., all 4 corners have independent val-
ues in the bilinear case). In this latter interpretation, the
open circles in the hierarchical basis are not zeroed, and
only the circles actually not drawn in Fig. 6 are zeroed. In

5. Whenever the Z matrix changes, we also have to recompute the quad-

tree spline using u ¢« S$ZS7u. The 8™ procedure is similar to s’, but now
u]. «— ul. - wjk'uk,
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this approach, large squares can have arbitrarily-detailed
ripples inside their domain resulting from fine-level basis
functions near the square’s boundaries. To date, we have
not investigated this alternative possibility.

6.1 Subdivision Strategy

The quadtree spline provides a convenient way to use
adaptively-sized patches for motion estimation, while
maintaining inter-patch continuity. The question remains
how to actually determine the topology of the patches, i.e.,
which patches get subdivided and which ones remain
large. Ideally, we would like each patch to cover a region of
the image within which the parametric motion model is
valid. In a real-world situation, this may correspond to pla-
nar surface patches undergoing rigid motion with a small
amount of perspective distortion (bilinear flow is then very
close to projective flow). However, usually we are not a
priori given the required segmentation of the image. In-
stead, we must deduce such a segmentation based on the
adequacy of the flow model within each patch.

The fundamental tool we will use here is the concept of
residual flow [25], recently used by Miiller et al. [35] to sub-
divide affine motion patches (which they call tiles). The re-
sidual flow is the per-pixel estimate of flow required to
register the two images in addition to the flow currently
being modeled by the parametric motion model. At a single
pixel, only the normal flow can be estimated,
(g.G?C e,GV)

N [l et e

n l(cx.cy)+e

(12)

where the intensity error ¢; and the gradient VI, = (Gf ,GY )

are given in (6) and (7). This measure is different from that
used in [25], [35], who sum the numerator and denominator
in (12) over a small neighborhood around each pixel.

To decide whether to split a spline patch into four
smaller patches, we sum the magnitude of the residual

normal flow ”uf\'“ over all the pixels in the patch and com-

pare it to a threshold 4, In fact, we use a p-norm,

(2

Patches where the motion model is adequate should fall
below this threshold, while patches which have multiple
motions should be above. Starting with the whole image,
we subdivide recursively until either the p-norm residual
falls below an acceptable value or the smallest patch size
considered (typically four to eight pixels wide) is reached.
The actual patch size and number of levels are currently set
by the user. Setting these automatically would make an
interesting topic for future research.

Figs. 8a to 8c show an example of a quadtree spline mo-
tion estimate produced with this splitting technique for a
simple synthetic example in which two central disks are
independently moving against a textured background. The
quadtree boundaries are warped to show the extent of the
estimated image motion (up and left for the top disc, down
and right for the bottom disc). Note how the subdivision
occurs mostly at the object boundaries, as would be ex-

p\F . .
, which can model a max operation as p — .
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pected. The most visible error (near the upper right edge of
the lower disc) occurs in an area of little image contrast and
where the motion is mostly parallel to the region contour.
An alternative to the iterative splitting strategy is to start
with small patches and to then merge adjacent patches with
compatible motion estimates into larger patches (within the
constraints of allowable quadtree topologies). To test if a
larger patch has consistent flow, we compare the four val-
ues along the edge of the patch and the value at the center
with the average values interpolated from the four corner
cells (look at the lower left quadrant of Fig. 6a to visualize
this). The relative difference between the estimated and
interpolated values,
6 -3

d:———-——”] I_<p
2

Jef Bl

where U, is the interpolated value, must be below a thresh-

old 6 (typically 0.25-0.5) for all five nodes before the four
constituent patches are allowed to be merged into a larger
patch. Notice that the quantity &; — 1, is exactly the value

of the hierarchical basis function at a node (at least for bi-
linear splines), so we are in effect replacing small hierarchi-
cal basis values with zero values (this has a Bayesian inter-
pretation, as we will discuss in the next section). Note also
that this consistency criterion may fail in regions of little
texture where the flow estimates are initially unreliable,
unless regularization is applied to make these flow fields
more smooth.

Fig. 8d shows an example of a quadtree spline motion
estimate produced with this merging technique. The results
are qualitatively quite similar to the results obtained with
the split technique, although more fragmentation (splitting)

is evident. It should be noted that changing the threholds 6,

and @; will result in more or less segmentation. At the mo-

ment, we do not have any automatic way to set these
thresholds.

7 A BAYESIAN INTERPRETATION

The connection between energy-based or regularized low-
level vision problems and Bayesian estimation formulations
is well known [27], [33], [52]. In a nutshell, it can be shown
that the energy or cost function being minimized can be
converted into a probability distribution over the un-
knowns using a Gibbs or Boltzmann distribution, and that
finding the minimum energy solution is equivalent to
maximum a posteriori (MAP) estimation. The Bayesian model
nicely decomposes the energy function into a measurement
model (typically the squared error terms between the
measurements and their predicted values) and a prior
model (which usually corresponds to the stabilizer or
smoothing term), i.e.,

E(u) = g(u,d) + £,(v) &

p(u) o e—g(u) - eﬁgd(ﬂ,d)e_gp(u) o p(u, d)p(u) (13)
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It then becomes straightforward to make use of robust sta-
tistical models by simply: modifying the appropriate energy
terms [8], [9].

=
o
i

(c) (d)
Fig. 8. Quadtree spline motion estimation (Two Discs (SRl Trees)
sequence): (a) input image, (b) true flow, (c) split technique, (d) merge
technique.

The basic spline-based flow model introduced in [55] is
already a valid prior model, since it restricts the family of
functions to the smooth set of tensor-product splines. In
most cases, a small amount of intensity variation inside
each spline patch is sufficient to ensure that a unique, well-
behaved solution exists. It is also easy to add a small
amount of regularization with quadratic penalty terms on
the @t;s and their finite differences to handle possibly fea-

tureless areas in the image.

Hierarchical basis splines, as well as other multilevel
representations such as overcompléte pyramids can be
viewed as multiresolution priors [59]. There are two basic
approaches to specifying such a prior. The first, which we
use in our current work, is to simply view the hierarchical
basis as a preconditioner, and to define the prior model
over the usual nodal basis [53]. The alternative is to define
the prior model directly on the hierarchical basis, usually
assuming that each basis element is statistically independ-
ent from the others (i.e., that the covariance matrix is di-
agonal) [59], [42].-An extreme example of this is the scale-
recursive multiscale Markov Random Fields introduced in
[14], whose special structure makes it possible to recover
the field in a single sweep through the pyramid. Unfortu-
nately, their technique is based on a piecewise-constant
model of flow, which results in recovered fields that have
excessive “blockiness” [31].

Within this framework, adaptive hierarchical basis
splines can be viewed as having a more complex mul-
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tiresolution prior where each hierarchical node has a non-
zero prior probability of being exactly zero. The split and
merge algorithms can be viewed as simple heuristic tech-
niques designed to recover the underlying motion field and
to decide which nodes are actually zero. More sophisticated
techniques to solve this problem would include simulated
annealing [33] and mean-field annealing [20].

Quadtree splines have an even more complicated prior
model, since the existence of zeros at certain levels in the
pyramid implies zeros at lower levels as well as zeros at
some neighboring nodes (depending on the exact interpre-
tation of the quadtree spline). We will not pursue these
models further in this paper, and leave their investigation
to future work.

8 EXPERIMENTAL RESULTS

To investigate the performance of our quadiree spline-
based motion estimator, we use the synthetically generated
Two Discs (SRI Trees) sequence shown in Fig. 8, for which
we know the true motion (Fig. 8b). The results of our
spline-based motion estimator for various choices of win-
dow size s, as well as the results with both the split and
merge techniques, are shown in Table 1. The experiments
show that the optimal fixed window size is s = 8, and that
both split and merge techniques provide slightly better re-
sults. The relatively small difference in error between the
various techniques is due to most of the error being con-
centrated in the regions where occlusions occur (Fig. 9).
Adding an occlusion detection process to our algorithm
should help reduce the errors in these regions.

. TABLE 1
SUMMARY OF Two Discs (SRI TRees) RESULTS
Technique Pixel | Std. Avg. Std. Density
Error | Dev. Ang. Dev.
Error

regular spline | 0.95 | 1.71 12.41° 18.95° 100%
(S = 16)
regular spline | 0.89 | 1.64 | 11.78° 17.75° 100%
(s=8)
regular spline | 0.95 | 1.68 | 14.81° | 17.80° | 100%
(s=4)
quadtree 0.85 | 1.58 | 11.04° | 16.66° | 100%
spline
(merge,
s=4)
quadtree 095 | 1.63 | 14.41° | 1811° | 100%
spline
(split, s = 4)

We also tested our algorithm on some of the standard
motion sequences used in other recent motion estimation
papers [6], [62], [41]. For each of these sequences, the same
global parameters were used as in [56], e.g., 10 iterations per
level, three levels in the coarse-to-fine or hierarchical basis
pyramid, etc. The computation times on a DEC 3000 Model
500 AXP for these algorithms were all under 30 seconds.

The results on the Hamburg Taxi sequence are shown in
Fig. 10, where the independent motion of the three moving
cars can be clearly distinguished. Notice that the algorithm
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was also able to pick out the small region of the moving
pedestrian near the upper left corner.

(@ (b)
Fig. 9. Flow error |ju — u*]l and residual normal flow "ufl" for Two

Discs (SRl Trees) sequence. Note how most of the errors are con-
centrated near the motion discontinuities and especially the disoc-
cluded region in the center.

The results on the Flower Garden sequence are shown in
Fig. 11. Here, the independent motion of the trunk of the
tree has clearly been separated from the rest of the scene.
The top of the flower garden, on the other hand, is not
clearly separated from the house and sky, since it appears

that the C° continuous motion field represented by the
splines is an adequate de:scription.6

(a) (b)
Fig. 10. Hamburg Taxi sequence: estimated quadtree and estimated
flow, merging s = 8 patches in a 3-level pyramid.

(a) (b)
Fig. 11. Flower Garden sequence: estimated quadtree and estimated
flow, merging s = 4 patches in a 4-level pyramid.

The results on the Yosemite sequence are shown in Fig,.
12, and the tabulated error figures are shown in Table 2. As
can be seen from these numbers, the results of using the
quadtree spline are only slightly better than the already

6. Unlike the global motion estimates used in {62], we do not require that
the motion be a combination of a few global affine motions.
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very good results obtained with our regtlar spline-based
motion estimator. As expected, the patch sizes are smaller
in the vicinity of the motion discontinuities (e.g., the top
edge of foreground peak).

TABLE 2
SUMMARY OF YOSEMITE RESULTS
Technique Average | Standard Density
Error Deviation
Lucas and Kanade 3.22 8.92 8.7%
(422 5.0)
Fleet and Jepson 5.28° 14.34° 30.6%
(r=1.25)
local flow 2.20° 5.87° 23.1%
(s =16, T,=3000)
local flow 3.09° 7.59° 39.6%
(s =16, T, =2000)
merged flow 3.00° 7.08° 39.4%
(merge, s=16)

e

@ (b)
Fig. 12. Yosemite sequence: estimated quadiree and estimated flow,
merging s = 8 patches in a 3-level pyramid.

The final sequence which we studied is the table of mar-
ble blocks acquired by Michael Otte [41] (Fig. 13). In this
scene, the camera is moving forward and left while all of
the blocks are stationary, except for the short central block,
which is independently moving to the left. The quadtree
segmentation of the motion field has separated out the tall
block in the foreground and the independently moving
block, but has not separated the other blocks from the table
or the checkered background. Changing the thresholds on
the merge algorithm could be used to achieve a greater
segmentation, but this does not appear to be necessary to
adequately model the motion field.

7

9 EXTENSIONS

We/ha\"//e recently extended the algorithm described in this
paper in a number of directions, which include better
multiframe flow estimation, parallel feature tracking, and
local search.

When given more than two frames, we must assume a
model of motion coherency across frames to take advantage
of the additional information available. The simplest as-
sumption is that of linear flow, i.e., that displacements be-
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tween successive images and a base image are known sca-
. 7 . .
lar multiples of each other, u; = s,u;."” Flow estimation can

then be formulated by summing the intensity differences
between the base frame and all other frames [55], which is
similar to the sum of sum of squared-distance (S55D) algo-
rithm of [39]. We have found that in practice this works
well, although it is often necessary to bootstrap the motion
estimate by first computing motion estimates with fewer
frames (this is because gradient descent gets trapped in
local minima when the inter-frame displacements become
large).

Fig. 18. Michael Otte’s sequence: estimated quadtree and estimated
flow, merging s = 8 patches in a 4-level pyramid.

When the motion is not linear, i.e., we have a non-zero
acceleration, we cannot perform a single batch optimiza-
tion. Instead, we can compute a separate flow field between
each pair of images, using the previous flow as an initial
guess. Alternatively, we can compute the motion between a
base image and each successive image, using a linear pre-
dictor w, = u,_; + (ut_1 - ut_z). This latter approach is use-

ful if we are trying to track feature points without the
problem of drift (accumulated error) which can occur if we
just use inter-frame flows.

The linearly predicted multiframe motion estimator
forms the basis of our parallel extended image sequence
feature tracker [57]. To separate locations in' the image
where features are being tracked reliably from uninforma-
tive or confusing regions, we use a combination of the local
Hessian estimate (9) and the local intensity error within
each spline patch. This is similar to Shi and Tomasi's
tracker [48], except that we use bilinear patches stitched
together by the spline motion model, which yields better
stability than isolated affine patches.

To deal with the local minima which can trap our gradi-
ent descent technique, we have also added an exhaustive
search component to our algorithm. At the beginning of
each set of iterations, e.g., after inter-level transfers in the
coarse to fine algorithm, or after splitting in the quadtree
spline estimator, we search around the current (u, v) esti-
mate by trying a discrete set of nearby (u, v) values (as in
SSD algorithms [3]). However, because we must maintain
spline continuity, we cannot make the selection of best mo-
tion estimate for each patch independently. Instead, we
average the motion estimates of neighboring patches to
determine the motion of each spline control vertex.

7. In the most common case, e.g., for spatiotemporal filtering, a uniform

temporal sampling (s, = £) is assumed, but this is not strictly necessary.
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In future work, we plan to extend our algorithm to han-
dle occlusions in order to improve the accuracy of the flow
estimates. The first part, which is simpler to implement, is
to simply detect foldovers, i.e., when one region occludes
another due to faster motion, and to disable error contribu-
tions from the occluded background. The second part
would be to add an explicit occlusion model, which is not

as straightforward because our splines are currently o
continuous. However, previous work on piecewise-
continuous hierarchical basis functions could be used [53].
Additional possibilities include using our method as a ro-
bust way to bootstrap layered motion models, and applying
our technique to stereo matching problems.

10 DiscusSION AND CONCLUSIONS

The quadtree-spline motion algorithm we have developed
provides a novel way of computing an accurate motion
estimate while performing. an initial segmentation of the
motion field. Our approach optimizes the same stability
versus detail tradeoff as adaptively-sized correlation win-
dows, without incurring the large computational cost of
overlapping windows and trial-and-error window size ad-
justment. Compared to the recursively split affine patch
tracker of [35], our technique provides a higher level of
continuity in the motion field, which should lead to more
accurate motion estimates.

In summary, quadtree splines provide a novel and use-
ful solution to the problem of describing a motion field at a
number of resolution levels while simultaneously optimiz-
ing the tradeoff between estimate stability and detail. The
ideas behind quadtree splines and adaptive hierarchical
basis functions are very general, and can be applied to al-
most any domain where splines and finite element methods
are currently used, including computer graphics and nu-
merical relaxation problems. Another promising applica-
tion is motion field estimation and compression for video
coding, where our technique would combine wavelet-based
coding of the motion field with run-length coding for the
zero wavelets. Octree-splines have already been applied
successfully to the elastic registration of 3D medical images,
and we plan to extend our approach to other applications.
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