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Introduction 1

What is computer vision? e A brief history e
Book overview e Sample syllabus e Notation

Image formation 33

Geometric primitives and transformations e
Photometric image formation e The digital camera

Image processing 105

Point operators e Linear filtering o
Non-linear filtering e Fourier transforms e
Pyramids and wavelets e Geometric transformations

Model fitting and optimization 187

Scattered data interpolation e
Variational methods and regularization
Markov random fields

tn

Deep learning 231

Supervised learning o Unsupervised learning o
Deep neural networks e  Convolutional networks e
More complex models

Recognition 325

Instance recognition e Image classification e
Object detection e Semantic segmentation e
Video understanding e Vision and language

Richard Szeliski

Feature detection and matching 395

Points and patches e Edges and contours e
Contour tracking e Lines and vanishing points e
Segmentation

8 Image alignment and stitching 485

Pairwise alignment e Image stitching e
Global alignment e Compositing

9  Motion estimation 537

Translational alignment e Parametric motion e
Optical flow e e Layered motion

10 Computational photography 589

Photometric calibration e High dynamic range imaging e
Super-resolution and blur removal e
Image matting and compositing e
Texture analysis and synthesis

11 Structure from motion and SLAM 663

Geometric intrinsic calibration e Pose estimation e
Two-frame structure from motion e
Multi-frame structure from motion e

Simultaneous localization and mapping (SLAM)

12 Depth estimation 729

Epipolar geometry e Sparse correspondence
Dense correspondence o Local methods e
Global optimization e Deep networks e
Multi-view stereo ® Monocular depth estimation

13 3D reconstruction 783

Shape from X e 3D scanning e
Surface representations e Point-based representations
Volumetric representations e Model-based reconstruction
Recovering texture maps and albedos

14 Image-based rendering 837

View interpolation e Layered depth images e
Light fields and Lumigraphs e Environment mattes e

Video-based rendering  » JNeural rendering
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View Interpolation

e Given two images with correspondences, morph (warp and cross-
dissolve) between them [Chen & Williams, SIGGRAPH’93]

depth image novel view
[Matthies,Szeliski,Kanade’88]
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View Morphing

* Morph between pair of images using epipolar
geometry [Seitz & Dyer, SIGGRAPH’96]

MNL
/\Lmu} Cmmm.s\ \

/

I Morphgd View
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Video view interpolation (later)
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Interactive 3D video scenarios

* Sports events, e.g., CMU’s 30-camera “EyeVision” system at
SuperBowl XXXV) and 2016

* Concert performances,
plays, circus acts

* Games
Takeo Kanade and Peter Rander | Figure 1. The
Carnegie Mellon University Virtualized Reality
. . studio: (a) conceptual:
* Instructional video o i | @ Done
) Centre for Artificial Intelligence and Robotics

e.g., golf, skating, martial arts
* Interactive (Internet) video

Richard Szeliski Reflections on Image-Based Rendering
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Outline

* Image-Based Rendering representations
* Lumigraphs, Light Fields, Sprites with Depth, and Layers

* Virtual Viewpoint Video

* 360° and 3D Video

* 3D Photos

» Reflections and transparency

* Neural rendering



Image-Based Rendering
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Computer Graphics

Richard Szeliski
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Computer Vision

Output

Richard Szeliski

’

/‘ Real Scene

\
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But, vision technology fails

Image \

Synthetic
Camera

Real Cameras
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..and so does graphics

Real Scene

Synthetic
Camera

Real Cameras
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Image-Based Rendering

Synthetic

Camera Real Cameras
_Or_
Expensive Image Synthesis
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Lumigraph / Light Field [1996]

Outside convex SW

Empty

4D




Lumigraph — Capture

e Convert images into a solid 3D model

* Render from images and model
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Lumigraph — Image Effects

Can model effects such as:
* parallax
e occlusion
* translucency
e refraction
* highlights
* reflections
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Unstructured Lumigraph

* What if the images aren’t sampled on
a regular 2D grid?

e Can still re-sample rays

e Ray weighting becomes more complex
[Heigl et al., DAGM’99]

e Unstructured Lumigraph [Buehler et al., SIGGRAPH’2000]
e Deep blending [Hedman et al., SG Asia 2018] oo
e FVS [Riegler & Koltun, ECCV’2020] > A

Deep Blending

-
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Surface Light Fields

* [Wood et al, SIGGRAPH 2000]

* Turn 4D parameterization around:
* image @ every surface pt.

* Leverage coherence:

e compressradiance fn
(BRDF * illumination)
after rotation by n




Surface Light Fields

* [Wood et al, SIGGRAPH 2000]

* Implicit Differentiable Renderer
[Yariv et al., NeurlIPS 2020]

 Stable View Synthesis
[Riegler and Koltun, 2021]

e Ref-NeRF
[Verbin et al., CVPR 2022]
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Environment Matting [2000]

Figure 1 Sample composite images constructed with the techniques of this
paper: slow but accurate on the left, and a more restricted example acquired at
video rates on the right.

.. NeRV: Neural Reflectance and Visibility Fields
for Relighting ... [Srinivasan et al., CVPR’21]

Richard Szeliski Reflections on Image-Based Rendering
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Layered Depth Image

25D7

Layered Depth Image

Richard Szeliski Reflections on Image-Based Rendering
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Layered Depth Image

* Rendering from LDI
[Shade et al., SIGGRAPH’98]

—
\

e Incremental in LDI Xand Y
« Guaranteed to be in back-to-front order

Richard Szeliski Reflections on Image-Based Rendering
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Sprites with Depth

* Represent scene as collection of cutouts with depth (planes + parallax)
* Render back to front with fwd/inverse warping [Shade et al., SIGGRAPH’98]
 Basis of Virtual Viewpoint Video [Zitnick et al. 2004]

* Immersive LFV .. Layered Mesh
[Broxton .. SG’20]

* GeLaTO [Martin-Brualla et al., ECCV’20]
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Multiplane images

\ / “stack of
acetates”

\1L’_|Z//

i

o

Synthesized image k

(a)

Wirtual camera

Reference viewpoint v

Layers at

_ fixed depths,
each is an
RGBA image.

ﬂ Movel viewpoint

Figure 14.7  Finely sliced fronto-parallel layers: (a) stack of acetates (Szeliski and Golland
1999) (©) 1999 Springer and (b) multiplane images (Zhou, Tucker, Flynn et al. 2018) (c) 2018

ACM.

Richard Szeliski Reflections on Image-Based Rendering

32



Multiplane images

Input images Inferred MPI Representation

Stereo Magnification...[Zhou et al., SIGGRAPH 2018]
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Multi-sphere and layered meshes

Immersive Light Field Video with a Layered Mesh Representation

MICHAEL BROXTON®, JOHN FLYNN*, RYAN OVERBECK", DANIEL ERICKSON", PETER HEDMAN,
MATTHEW DUVALL, JASON DOURGARIAN, JAY BUSCH, MATT WHALEN, and PAUL DEBEVEC, Google

(a) Capture Rig (b) Multi-Sphere Image (c) Layered Mesh Representation

[SIGGRAPH’2020]
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Virtual Viewpoint Video
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Virtual Viewpoint Video [SIGGRAPH 2004]

cameras =

controlling

Richard Szeliski Reflections on Image-Based Rendering

[Broxton SG’20]
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Matting

Richard Szeliski

Background Surface

Some pixels : Close up of real image:
get influence —

for multiple Foreground Surface

surfaces. :

Image

Multiple colorsand depths at
boundary pixels...

Camera
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Find matting information:

1. Find boundary
strips using depth.

the foreground and background object.

Background

I Foreground

Richard Szeliski Reflections on Image-Based Rendering
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Why matting is important

No Matting

Richard Szeliski Reflections on Image-Based Rendering
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Virtual Viewpoint Video

Two-layer model with
thin boundary strips

[Zitnick et al., SIGGRAPH’ 04]
Main Layer: Boundary Layer:

Main

41



Massive Arabesque




360° Video

Richard Szeliski
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360 Video
[Uyttendaele et al. 2004]

i ‘
.Z

Ladybug (six-camera head)
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Acquisition platforms (today)

Rcsolu_tion
Foxrrx FPxx,
?m* LR
Q@ 1 xax @PEAH*
W xxxx o
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360 Video
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360 Video

i§ holor | &2
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Google Jump [2015]

Richard Szeliski

Reflect

ions on Image-Based Rendering

DY o S

JUMP
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Facebook Surround 360 [2016]

Richard Szeliski Reflections on Image-Based Rendering
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Facebook Surround 360 [2017]

Facebook’'s new Surround 360 video cameras let
you move around inside live-action scenes

The freedom of VR with the fidelity of real life

By Nick Statt | @nickstatt | Apr 19, 2017, 1:15pm EDT

Facebook today announced the second generation of its
Surround 360 video camera design, and this time the company
is serious about helping potential customers purchase it as an
actual product. The Surround 360, which Facebook unveiled

facebook
SURROUND 360

last year as an open-source spec guide for others to build off of,

has been upgraded as both a larger, more capable unit and a
smaller, more portable version.
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https://www.theverge.com/2017/4/19/15345738/facebook-surround-360-video-cameras-f8-conference-2017

An Integrated 6DoF Video Camera and System Design

ALBERT PARRA POZO, MICHAEL TOKSVIG, TERRY FILIBA SCHRAGER, and JOYCE HSU, Facebook Inc.
UDAY MATHUR, RED Digital Cinema
ALEXANDER SORKINE-HORNUNG, RICK SZELISKI, and BRIAN CABRAL, Facebook Inc.

Fig. 1. The commercial 16 camera system, an equirectangular depth map, and final color rendering produced from our system.

. [SIGGRAPH Asia 2019]
Video
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ParraPozo-SGA19.mp4

Hemispherical light field capture & playback

(@) Capture Rig (b) Multi-Sphere Image (c) Layered Mesh Representation

IMMERSIVE LIGHT FIELD VIDEO
WITH A LAYERED MESH REPRESENTATION

SIGGRAPH 2020 Technical Paper
Download PDF

Michael Broxton*, John Flynn*, Ryan Overbeck*, Daniel Erickson*,

Peter Hedman, Matthew DuVall, Jason Dourgarian, Jay Busch, Matt Whalen,
Paul Debevec

Richard Szeliski Reflections on Image-Based Rendering
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Immersive Video Stabilization

Richard Szeliski Reflections on Image-Based Rendering



First-person Hyperlapse

Create buttery-smooth “fast forwards” from action videos

t - “L%\..‘ : - 2 e SR ‘ 3 ‘;i Y \
(a) Scene reconstruction (b) Proxy geometry (c) Stitched & blended

[Kopf, Cohen, Szeliski, SIGGRAPH 2014]
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Large-Scale Reconstruction
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Photo Tourism

flickr

Home The Tour Sign Up Explore

SearCh Photos Groups People
trevi rome

@ We found 13,146 photos matching trevi and rome.

View: Most relevant * Most recent * Most interesting

From langenberg

From batigolix

From batigolix

| s

Richard Szeliski

From Nastrina1981

From zoojeS

SignIn  Help

| Search everyone's photos Search

NEW Search by Camera

I[ searcH

Show details

Trevi - Rome
Save money on your hotel
reservation in Rome.
www.asiarooms.com

Trevi Hotel Rome

Save on Trevi Hotel in Rome.
Instant confirmation with
discounted prices.
www.bookinhotels.com

Trevi Hotel in Rome

A1 Discount Hotels. No
hooking fees. Great service.
Low rates.
www.A1-Discount-Hotels.com

Hotel Trevi Rome
Search over 120 travel sites.

Internet images

Computed 3D structure
[Snavely, Seitz, Szeliski, SIGGRAPH 2006]
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System overview

Scene
reconstruction

J

Input photographs

Relative camera positions and
orientations

Point cloud

Sparse correspondence

Richard Szeliski
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Piecewise planar proxies

. j"".“’f T
ey
< -
7 a
"«
» v
g * = =
. , Reconstruct Lines
60 images Structure from motion 4

Tt

Detect Multiple Planes Piecewise planar depth-map

[Sinha, Steedly, Szeliski ICCV’09]
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Photo Tours - 2012

CLEMEN N 'ONTM
W A at

Ry aem

Trevi Fountain

N

[Kushal et al., 3DIMPVT 2012]
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The Visual Turing Test - 2013

Fioure 5 Visnal Turing test Tn each imace nair the oround trith image i< on the left and onr resnlt is on the richt

[Shan et al., 3DV 2013]
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Color Depth Normal map - Geometry-aware Lighting
Reconstruction I 1 Fffects

Casual 3D Photography

Peter Hedman, Suhib Alsisan, Richard Szeliski, Johannes Kopf
SIGGRAPH Asia 2017
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Casual 3D Photography

v v v

(a) Capture & (b) Sparse reconstruction (d) Warping (e) Stitching
pre-processing .

(f) Two-layer fusion

]
]

mmE

~,
N

e %
i N &g

R NN
SEANNS SR

Stage

1

1

\
——‘g

LAY
?

EEENE

Point cloud & N Depth maps N Partial panos (FG) FG depth & color
N camera poses

Stage output

| ¢ . . ;
N Partial panos (BG) BG depth & color
I =
! - S

(a) Capture and pre-processing, Sec. 4.1; (b) Sparse reconstruction, Sec. 4.2; (c) Dense reconstruction, Sec. 4.3; (d) Warping into
a central panorama, Sec. 4.4.1; (e) Parallax-tolerant Stitching, Sec. 4.4.2; (f) Two-layer fusion, Sec. 4.4.3.

Figure 2: A breakdown of the 3D photo reconstruction algorithm into its six stages, with corresponding inputs and outputs:
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Casual 3D Photography

(a) Front color-and-depth panorama

Richard Szeliski Reflections on Image-Based Rendering

_conad

(b) Fro detail

(c) Back detail
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Casual 3D Photography

Richard Szeliski

GYMNASIUM GAs WoRKs PARK

PIKE PLACE
L 360° x 180° scenes captured with DSLR cameras I

SorFa CAFE TroLL GRAVITY KITcHEN CLowNs KERRY PARK
L— Partial scenes captured with DSLR cameras — L Partial scenes captured with cell phone cameras |
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Instant 3D Photography

Peter Hedman Johannes Kopf
University College London * Facebook

V25 .

TNt —C | | :
;Péif i SIGGRAPH2018

* This work was done while Peter was working as a contractor for Facebook.

.

Dual camera Input burst of 34 color-and-depth photos, Our 3D panorama (showing color, depth, and a 3D effect),
phone captured in 34.0 seconds generated in 34.7 seconds.

Our work enables practical and casual 3D capture with regular dual camera cell phones. Left: A burst of input color-and-depth image pairs that
we captured with a dual camera cell phone at a rate of one image per second. Right: 3D panorama generated with our algorithm in about the
same time it took to capture. The geometry is highly detailed and enables viewing with binocular and motion parallax in VR, as well as applying
3D effects that interact with the scene, e.qg., through occlusions (right).

Richard Szeliski Reflections on Image-Based Rendering
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http://visual.cs.ucl.ac.uk/pubs/instant3d/

Practical 3D Photography

Johannes Kopf Suhib Alsisan Francis Ge Yangming Chong Kevin Matzen
Ocean Quigley Josh Patterson Jossie Tirado Shu Wu Michael F. Cohen
Facebook

Practical 3D Photography

ﬂﬁli Johannes Kopf, Suhib Alsisan, Francis Ge, Yangming Chong, Kevin Matzen, Ocean Quigley,
= : Josh Patterson, Jossie Tirado, Shu Wu, Michael F. Cohen

CVPR Waorkshop on Computer Vision for Augmented and Virtual Reality. Long Beach, CA, 2019.
PDF

#spotlight, #demo

| . ) ' 4\
(a) Input (setup) (b) LDI (inpainted color / depth) (d) Triangle Mesh (e) Novel view
(100 ms) (1100 ms) (100 ms) (30fps)
Figure 1. 3D Photo Creation. Runtime measured on iPhone X.
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3D Photos on Facebook

Estimate depth map from photo to create an interactive

o E R ]
€ Create Post POST
Kevin Matzen
Qr v || + Abom '~

What's on your mind?
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3D Photos on Facebook

Estimate depth map from photo to create an interactive animation

. , Z‘ . = -~ PR SR 4
: o . ; 3 BT gt S
~— = K1 7 B N ' R s ~ :
, - o > = B
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Google Photos cinematic effect

Jamie Aspinall

Product Manager, Google Photos

Published Dec 15, 2020
Relive the moment with Cinematic photos

Cinematic photos help you relive your memories in a way that feels more vivid and realistic—so
you feel like you're transported back to that moment. To do this, we use machine learning to
predict an image's depth and produce a 3D representation of the scene—even if the original
image doesn't include depth information from the camera. Then we animate a virtual camera for

a smooth panning effect—just like out of the movies.

https://blog.soogle/products/photos/new-cinematic-photos-and-more-ways-relive-your-memories/
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What's missing?

Richard Szeliski Reflections on Image-Based Rendering
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Reflections and Transparency
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Image-Based Rendering with Reflections

* Reflections, gloss, and highlights are everywhere

* How do these affect image-based modeling / rendering?
[Sinha et al., SIGGRAPH 2012]
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Standard IBR with Reflections
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Our New Rendering System
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Richard Szeliski
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Richard Szeliski

Our Result Standard I BR
ilwo lZayers === l@nci¥aycr
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Front Depth
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Rear Depth
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Front Lar
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Rear Layer
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Image-Based Rendering in the Gradient Domain

* Wrong depth for textureless or transparent areas

* Solve by reconstructing depth at gradients and re-integrating
[Kopf et al. SIGGRAPH Asia 2013]

Richard Szeliski Reflections on Image-Based Rendering
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Richard Szeliski

Preprocessing

Gradient domain
rendering

Reflections on Image-Based Rendering

Integration
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Gradient Domain

BiXchard Szeliski Reflections on Image-Based Rendering



Our Method
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Open Issues

* Improve stereo matching

* Plane + parallax representation
* Reflectivity (B) estimation

* |terative Refinement
* Handle distorted reflections

* [ See next slide |

* Model real-valued reflectivity
* Fresnel reflection
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This ICCV2013 paper is the Open Access version, provided by the Computer Vision Foundation.
The authoritative version of this paper is available in IEEE Xplore.

Real-World Normal Map Capture for Nearly Flat Reflective Surfaces

Bastien Jacquet!, Christian Hine!,

ETH Ziirich!
Ziirich, Switzerland

Abstract

Although specular objects have gained interest in recent
vears, virtually no approaches exist for markerless recon-
struction of reflective scenes in the wild. In this work, we
present a practical approach to capturing normal maps in
real-world scenes using video only. We focus on nearly pla-
nar surfaces such as windows, facades from glass or metal,
or frames, screens and other indoor objects and show how
normal maps of these can be obtained without the use of an
artificial calibration object. Rather, we track the reflections

nf vonl vonvld ctvainht linoc vohilo mavina woith A hand hold

Kevin Koser'?*, Marc Pollefeys!

GEOMAR Helmholtz Centre for Ocean Research?
Kiel, Germany

Figure 1. Real-world glass reflection. Notice that reflection in dif-
ferent windows on the same facade can appear very different due to
minor deformations and normal variations. Our goal is to capture
normal maps of real windows to faithfully reproduce this effect.

Reflections on Image-Based Rendering
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Neural Rendering
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Animating Pictures

Animating Pictures with Eulerian Motion Fields

1 1

Aleksander Holynski', Brian Curless ', Steven M. Seitz!, Richard Szeliski?

University of Washington, 2Facebook

B Paper = arXiv © Video ,';_’; . ’ f" e (coming soon)

(a) Input image : (b) Output looping video

https://eulerian.cs.washington.edu/

Richard Szeliski Reflections on Image-Based Rendering
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Animating Pictures

L L Ly L
e e |
—y. ¢
. &
(a) ® ® ® ®
dy(1) dpa() dpy(n dy(n)
displ map | .., [displacement map displacement map displacement map
type="still"” type="tree” type="“cloud” type="water”
I Il Il I
. rp—— L Y
® . ... ® @
R
Ly() Ly(1) Ly, Liy(0) L1

Figure 14.18  Animating still pictures (Chuang, Goldman et al. 2005) © 2005 ACM. (a)
The input still image is manually segmented into (b) several layers. (c) Each layer is then an-
imated with a different stochastic motion texture (d) The animated layers are then composited
to produce (e¢) the final animation

Figure 14.17  Video textures (Schidl, Szeliski et al. 2000) © 2000 ACM: (a) a clock pen-

Richard Szeliski
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Animating Pictures

~ Motion Estimation (Section 4)

- |Motion Synthesis| =

A/\'

Animation (Section 5)

Motion field

Input image

—p> Encoder

oo

Euler Fose WM
Integration | =+
Displacement fields
Symmetric
splatting

]
Warped deep features

Outpt frame

Figure 2: Overview: Given an input image /o, our motion estimation network predicts a motion field M. Through Euler integration, M
is used to generate future and past displacement fields Fy—; and Fyo—:—n , which define the source pixel locations in all other frames .
To animate the input image using our estimated motion, we first use a feature encoder network to encode the image as a feature map D.
This feature map is warped by the displacement fields (using a novel symmetric splatting technique) to produce the corresponding warped
feature map D;. The warped features are provided to the decoder network to create the output video frame /;.

Richard Szeliski
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Animating Pictures

£ This video has audio &

Animating Pictures
with Eulerian Motion Fields

Aleksander Holynski Brian Curless Steven M. Seitz Richard Szeliski
University of Washington University of Washington University of Washington Facebook




Animating Pictures

Figure 4: Seamless looping: An illustrated example of how seam-

less loops are created. Two feature videos are created by warping
Figure 3: Deep warping: Above: Naive splatting of RGB pixels Dy. The first, V. contains the result of integrating the motion field
results in increasingly large unknown regions over time, shown in M, resulting in a video starting with the input image and animat-

magenta. Below: For the same frames, our deep warping approach

ing into the future. The second, V), instead uses — M, resulting
synthesizes realistic texture in these unknown regions.

in a video starting in the past and ending with the input frame.
These two videos typically contain complementary unknown re-
gions (shown in magenta). Before decoding, we combine the two

Rick Szeliski Comp Photo H2 2020 review 106



Animating Pictures

F
S M Euler Foot
—»  [Motion Synthesis| = > . ——
- ; Integration Loss
1. " M = lllllllllllllllllllll.ll’ W
' _ AR - l - Motion field Eu'er. Real motion field Real middle frame
P ] )RR D | Integration
Input image lOn y S‘,’l’l‘.fﬂ(‘f.’i( .t'J ® -
—> Encoder e i Siey o B = ; —" A =2
A3 e splatting e Bl 38 . l -9
t ep tu
Real first frame Symmetric
ire 2: Overview: Given an input image /. our motion estimation work predicts a motion field W —]l—_] [— splattlng -
i "-‘I:"i \ 1 ' ( H‘”» / =R which SOUrce pi Encoder Warped deep features Output frame
rOVi ‘ Real last frame Deep features

Figure 5: Training: As described in Section 5.1, each frame in our
generated looping video is composed of textures from two warped
frames. To supervise this process during training, i.e., to have a
real frame to compare against, we perform our symmetric splatting
using the features from two different frames, Iy and Iy (instead of
I twice, as in inference). We enforce the motion field M to match

P le ol
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Animating Pictures

e 3

Figure 6: Examples of the input images (top), alongside their corresponding synthesized motion fields (bottom). Full resolution images,
along with their corresponding animated videos, can be found in the supplementary video.

https://eulerian.cs.washington.edu/
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State of the Art on Neural Rendering (2020)

A. Tewari'* O. Fried”™ J. Thies® V. Sitzmann®* S. Lombardi* K. Sunkavalli’® R. Martin-Brualla® T. Simon* J. Saragih* M. NieBner’
R. Pandey6 S. Fanello® G. Wetzstein® J.-Y. Zhu® C. Theobalt' M. Agrawala® E. Shechtman® D. B Goldman® M. Zollhofer*

'MPI Informatics 2Stanford University *Technical University of Munich *Facebook Reality Labs > Adobe Research ®Google Inc *Equa

Neural Renderin

CVPR 2020 tutorial.

09:00-09:15

‘Welcome and Introduction

0915-09:30 | Fundamentals, Taxonomy, Neural Rendering
Semantic Photo Synthesis and Manipulation

09:30-09:40 | Qverview

09:40-10:00 | Semantic Image Synthesis with Spatially-Adaptive Normalization

Facial Reenactment & Body Reenactment

10:25-10:35 Overview

10:35-11:00 Neural Rendering for High-Quality Synthesis of Human Portrait Video and
Images

11:00-11:20 Neural Rendering for Virtual Avatars

Richard Szeliski

Michael Zollhofer

Ayush Tewari

Jun-Yan Zhu

Taesung Park

Justus Thies
Christian Theobalt

Aliaksandra
Shysheya

M

1€ e

gyﬁ[‘h‘es?s*
11:20-11:35 Overview
11:30-11:50 Neural Rerendering in the Wild
11:50-12:10 NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis

Learning to Relight

13:20-13:30 Overview
13:30-13:50 Multi-view Relighting Using a Geometry-Aware Network
13:50-14:10 Neural Inverse Rendering

Free Viewpoint Videos

1410-14:20 Overview

14:20-14:40 Neural Rendering for Performance Capture

14:40-15:00 Neural Volumes: Learning Dynamic Renderable Volumes from Images
15:30-15:45 Social Implications, Open Challenges, Conclusion

15:45-16:15 Followup Discussion

= - ~us methods. Images from [Si

Vincent Sizmann

Moustafa Meshry

Ben Mildenhall

at combines genera-
Zexiang Xu M Cﬂmpurer graph_
Julien Philip

twork training. With
neural rendering is

Abhimitra Meka
Sean Fanello
Rohit K. Pandey

Stephen Lombardi

Ohad Fried
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A. Tewari & O. Fried & J. Thies et al. / State of the Ant on Neural Rendering

Method

Bauetal. [BSP* 19a]

Brock et al. [BLRW17]

Chen and Kolwn [CK17]

Isolaetal [IZZE1T]

Karacan et al. [KAEE16]

Park et al. [PLWZ19b]

Wang et al. [WLZ* 18b]

RES

Zhuet al. [ZKSE16]

=1

Semantic Photo Synthesis
(Section 6.1)

Aliev et al. [AUL19]

Eslami et al. [ERB* 18]

Hedman et al. [HPP* 18]

Meshry et al. [MGK* 19]

Nguyen-Phuoc et al. [NPLBY 18]

I e T e e e e e I

Nguyen-Phuoc et al. [NLT* 10]

x

Sitzmann et al. [STH* 19]

Sitzmann et al. [SZW 19]

Thies et al. [TZT*20]

Xuetal. [XBS*19]

Novel View Synthesis
(Section 6.2)

Lombardi et al. [LSS™19]

Martin-Brualla et al. [MBPY * 18]

Pandey et al. [PTY* 19]

Shysheya et al. [SZA* 19]

Free Viewpoint Video
(Section 6.3)

Mekaet al. [MHP* 19]
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Philip et al. [PGZ" 19]

Sunetal. [SBT"19]

Xuetal [XSHR18]

Zhou et al. [ZHSJ19]

Relighting
(Section 6.4)

Fried et al. [FTZ* 19]

Kim etal. [KGT*18]

PE

Lombardi et al. [LSSS18]

IMC MX

CcP

Thies et al. [TZN19]

IR( 1

CE

Wei ctal. [WSS5-19]

I MX

CcP

Zakharov et al. [ZSBL19]

IK 1

Facial Reenactment
(Section 6.5)

Aberman et al. [ASL*19]

Chan et al. [CGZE18]

Liuetal. [LXZ*19]

VM

v
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Body Reenactment
(Section 6.5)

Tnputs and Outputs

Control

Misc

Table 1: Selected methods presented in this survey. See Section 6 for explanation of atributes in the wable and their possible value:
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Advances in Neural Rendering (2022)

A. Tewari'® J. Thies>* B. Mildenhall** P. Srinivasan®* E. Tretschk! W. Yifan*® C. Lassner’ V. Sitzmann® R. Martin-Brualla®
S. Lombardi® T. Simon® C. Theobalt' M. NieBner’ J. T. Barron® G. Wetzstein® M. Zollhofer® V. Golyanik'

'MPI for Informatics ~MPI for Intelligent Systems 3Google Research *ETH Ziirich 5Rea]ity Labs Research
SMIT 7Technical University of Munich 8Stanford University *Equal contribution.

Figure 1: This state-of-the-art report dlscusses a large variety of neural rendermg methods which enable applications such as novel-view
synthesis of static and dynamic scenes. generative modeling of objects, and scene relighting. See Section 4 for more details on the various
methods. Images adapted from [MST*20,TY20,CMK*21,ZSD*21,BBJ*21,LSS*21,PSB*21,JXX"21,PDW*21] ©2021 IEEE.

Advances in Neural Rendering Losring o Rl

SIGGRAPH 2021 Course Relightable and Editable Neural Rendering Zexiang Xu
Total Relighting Sergio Orts-Escolano
Introduction Relightable NeRFs Pratul Srinivasan

Fundamentals Michael Zollhefer . R
Compositional Scene Representations
Cenerative Adversarial Networks

Compositional Scene Representations Michelle Guo

Loss Functions Jun-Yan Zhu
) . Free Viewpoint Videos

CANs with 3D Control Ayush Tewari
Neural Scene Representations Overview of NeRFs for General Dynamic Scenes Edgar Tretschk
Neural Scene Representations Gordon Wetzstein Efficient Neural Rendering of Dynamic Humans and Scenes Stephen Lombardi
Novel View Synthesis for Objects and Scenes Neural Rendering for Dynamic Performance Capture Rohit Pandey
Introduction Vincent Sitzmann Facial and Body Rendering
Neural Volumetric Rendering Ben Mindenhall Neural Rendering of Faces and Bodies Justus Thies
o R i g G YRR gl Neural Rendering and Video-based Animation of Human Actors Christian Theobalt
Towards Instant 3D Capture Dan Goldman

Neural Rendering for Animatable Avatars Tomas Simon
Deformable NeRFs Keunhong Park
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TUM Al Lecture series (2020-2021

Photorealistic Telepresence

Yaser Sheikh
Facebook Reality Labs

alistic ..
TUM Al - Guest Lecture Seiies

l aser Sheikh
otorealistic Telepresence

Pushing Factor Graphs beyond SLAM

Frank Dellaert
Georgia Tech, Google

nrank Dellaert
Push tor Graphs beyond SLAM

Sights, sounds, and space: Audio-visual learning in 3D environments

Kristen Grauman
University of Texas, Facebook Al Research

Richard Szeliski

ght N

d
TUM Al - Guest Lectute Seiies

gw
ights, sounds, and space:

Audio-visual learning in 3D environments

Controllable Content Generation without Direct Supervision

LOALI0 € L0.
TUM Al - Guest Lecture Seiies

qmloy Mitra
Controllable Content Generation

without Direct Supervision

Niloy Mitra
University College London, Adobe Research

New methods for Reconstruction and Neural Rendering of Real World Scenes

Neural Rendering of Real World Scenes

Christian Theobalt
MPI for Informatics, Saariand University

Learning to Retime People in Videos

ning

TUMAI; Guest Lecture Seiies

Tali Dekel
Lea elime People in Videos

Tali Dekel
Google, Weizmann Institute of Science
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TUM Al Lecture series (2020-2021

The Moon Camera

ill Freeman

The Moon Camera

Bill Freeman
MIT, Gocgle

Reconstructing the Plenoptic Function

Noah Snavely
Cornell Tech, Google

Reconstructing... 3
TUM Al - Guest Lecture Seiies

moah Snavely
Recol ing the Plenoptic Function

Understanding and Extending Neural Radiance Fields

nn T. Barron (Google)
nderstanding and Extending

Neural Radiance Fields

Jonathan T. Barron
Google

Neural Implicit Representations for 3D Vision

Andreas Geiger
University of Tubingen, MPI

MAI - Guest Lecture Seiies

dreas Gei

er

eural Implicit

Representations for 3D Vision

Towards Graph-Based Spatial Al

.

api}

TUMAI - Guest Lecture Seies

rew Davison
Towards Graph-Based Spatial Al

Andrew Davison
Imperial College London

Richard Szeliski

Al for 3D Content Creation

Sanja Fidler
University of Toronto, Nvidia, Vector
Institute
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TUM Al Lecture series (2020-2021

A Question of Representation in 3D Computer Vision

Bharath Hariharan
Cornell University

mra(h Hariharan
A on of Representation

in 3D Computer Vision

Shape Representations: Parametric Meshes vs Implicit Functions

’é o
\ I, ard Pons-Moll
= - .
- ‘é Representations:
\ / \ ¥ N Parametric Meshes vs Implicit Functions
g h

Gerard Pons-Moll Y
Max Planck Institute for Informatics

Making 3D Predictions with 2D Supervision

mmn Johnson
ng 3D Predictions

with 2D Supervision

Justin Johnson
University of Michigan, Facebook Al
Research

Richard Szeliski

Computer Vision Startup Trends & Commercializing Research

omputer Visi
TUM Al - Guest Lecture Seiies

i nan Nisselson
\ C Vision Startup Trends
&

Commercializing Research

__

Evan Nisselson
LDV Capital

Perceiving Humans in the 3D World

Angjoo Kanazawa
UC Berkeley, Google Research

Implicit Neural Scene Representations

Vincent Sitzmann

Stanford University, MIT Snge shor 500 Foet inforonce Complex soeréh & dunéives
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3D representations for neural rendering

e 3D models & textures e \Voxels

Novel view 4 Deep Blendlng

(1) Ranked Pixel edicted
Contributions Blen# ing Weights

Multiview Capture (Section 8) Encoder + Decoder (Section 4+5) Ray Marching (Section 6)

* Depth images and layers  Implicit functions (MLPs)

IBR Algorithm

—
(a) Realsurface Reconstruction  (b)

D" DeepMPI i RGBa MPI | fRendered view 5D Input Output Volume
L \ ‘ = Position + Direction Color + Density Rendering
r (x.2,0.9) —»[l[l[l—» RGBo)
e lE = R ; :
st g o F v \{0,@" Ray 1
Bf)a{)Fr’, g W 0 /
‘ O e o g p * p—

I s Real Exemplar (I)’.Deep buffer =] Ray 2 ‘

Ray Distance

(b) Planar proxies
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Free View Synthesis

2 G. Riegler and V. Koltun

- AW ol e R
Fig.1: Novel view synthesis from unstructured input images. The first three
images show our synthesized results on the Truck scene from Tanks and Tem-
ples [21]. The unstructured image sequence was recorded using a handheld cam-

Richard Szeliski

Fig. 3: Overview

Free View Synthesis

Image Encoder Blending Decoder

I — {} By — D—H—H@

- —— - -
- —— -

_"fr,

I
|
|
+
I —] ﬂ. WD) I
§

CK — forward connection

Iﬂ - —— - recurrent connection
3.4
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of the recurrent mapping and blending network. The input is a
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Stable View Synth

esls [Riegler and Koltun]

Furpoousy

(a) Geometric scaffold (b) Encoding source images (c) On-surface

Figure 2: Overview of Stable View Synthesis. (a) A geometric scaffold of t

f, g

Figure 3: On-surface aggregation. A 3D point x on the
ceometric scaffold I is seen in a set of source images. Each

) o ] such image contributes a feature vector f;. along a ray vy
aggregation (d) Rendering in the target view

he scene is constructed using structure-from-

motion, multiple-view stereo, and meshing. (b) All source images are encoded into feature tensors via a convolutional

network. (c) Given a new target view (red camera), feature vectors from the soy
the geometric scaffold. Red arrows map 3D points to the target view, green ary
(d) The output image in the target view is rendered from a tensor of synthesize

) & = || .
Vladlen Koltun <vkoltun@gmail.com: I
To Richard Szeliski 21872021
Cc Gernot Riegler

Your book is coming along! | read over the monodepth section and the neural rendering section. Both look good
to me. They come across as fair and comprehensive. The neural rendering section is a bit like covering Waterloo
in the middle of the battle. You can describe the position and movements of the different pieces, but everything
i= in motion and it's not clear what will survive, what will be remembered, and what shape this will all settle into.

Best,
Vladlen

Richard Szeliski
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NeRF++

NERF++: ANALYZING AND IMPROVING
NEURAL RADIANCE FIELDS

Kai Zhang Gernot Riegler Noah Snavely Vladlen Koltun
Cornell Tech Intel Labs Cornell Tech Intel Labs

B={(z,y,2): /a2 +y?>+22 =1}
*
- N
o1 \\'{
e .".'J N

*
,‘\‘3

&

5

(a) bounding volume for the truck only (b) bounding volume for the entire scene

[

Figure 5: For 360° captures of unbounded scenes, NeRF’s parameterization of space either models : L :

- . B . 2 Figure 6: NeRF++ applies different parameteriza-
only a portion of the scene, leading to significant artifacts in background elements (a), or models the tions for scene contents inside and outside the unit
full scene and suffers from an overall loss of detail due to finite sampling resolution (b). sphere.

* Adapt volume to camera configuration (MPI ~ volumetric grid)
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NeRV and NeRD (2021)

iﬂ‘“%l‘ﬁl

(a) Input images of the scene under unconstrained varying (known) lighting conditions

- *

(b) Output renderings from novel viewpoints and lighting conditions

Figure 1: We optimize a Neural Reflectance and Visibility Field
(NeRV) 3D representation from a set of input images of a scene
illuminated by known but unconstrained lighting. Our NeRV repre-
sentation can be rendered from novel views under arbitrary lighting
conditions not seen during training. Here, we visualize example
input data and renderings for two scenes. The first two output
rendered images for each scene are from the same viewpoint, each
illuminated by a point light at a different location, and the last image
is from a different viewpoint under a random colored illumination.

Richard Szeliski

Basecolor Metallic

o

Roughness Normal

Relighting Textured
View synthesis Mesh

Multi-View Images NeRD Volume Decomposed BRDF

Figure 1: Neural Reflectance Decomposition. Multiple views of an object under varying or fixed illumination are encoded
into the NeRD volume. During the encoding process, information provided by all samples is decomposed into geometry,
spatially-varying BRDF parameters and a rough approximation of the incident illumination in a globally consistent way.
This decomposition can be easily extracted and re-rendered under a novel illumination condition in real-time.
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Real-time

Neural Based Rendering

NeX: Real-time View Synthesis with Neural Basis Expansion

Suttisak Wizadwongsa®

{suttisak.w_s19, pakkapon

Rreflectance coefficent
A

,
ST

Neural basis functiong

RGB Pixel = ko +k; .+kz'+k3. +--tky
[wew-gepencent)

(a) NeX MPI

Figure 1: (a) Each pixel in NeX multiplane ima
reflectance coefficients ky...k,. A linear combi
produces the final color value. (b, ¢) show ou
effects such as the reflection on the silver spoor|

FastNeRF: High-Fidelity Neural Rendering at 200FPS

Stephan J. Garbin* Marek Kowalski® Matthew Johnson
Jamie Shotton Julien Valentin

Microsoft

NeRF at 0.06FPS

KiloNeRF: Speeding up Neural Radiance Fields with Thousands of Tiny MLPs

Figure 1. FastNeRF renders high-resol
methods, such as NeRF, are orders of 1

Richard Szeliski

Christian Reiser'?  Songyou Peng'®  Yiyi Liao'? Andreas Geiger'*
'"Max Planck Institute for Intelligent Systems, Tiibingen *University of Tiibingen *ETH Zurich

{firstname.lastname}@tue.mpg.de
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Instant Neural Graphics Primitives (2022)

Instant Neural Graphics Primitives with a Multiresolution Hash Encoding

THOMAS MULLER, NVIDIA, Switzerland
ALEX EVANS, NVIDIA, United Kingdom
CHRISTOPH SCHIED, NVIDIA, USA
ALEXANDER KELLER, NVIDIA, Germany

https://nvlabs.github.io/instant-ngp

Trained for 1 second 15 seconds

Gigapixel image

1 second

SDF

NRC

NeRF

Richard Szeliski

- _ 1/ Ny F
L=2 b=15
o[-
1 m(y:d)
2 —
EH 0.0
2 0 2 o 0\ y O O O
ﬂ L1 . L0000 _,
o AT 0.0:0/0
DT : —— H: 00O
e 1 00
[
: ;
1 7 =
(1) Hashing of voxel vertices (2) Lookup  (3) Linear interpolation  (4) Concatenation (5) Neural network
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3D Gaussian Splatting (2023)

3D Gaussian Splatting for Real-Time Radiance Field Rendering

BERNHARD KERBL®, Inria, Université Cote d’Azur, France
GEORGIOS KOPANAS?®, Inria, Université Cote d’Azur, France
THOMAS LEIMKUHLER, Max-Planck-Institut fiir Informatik, Germany
GEORGE DRETTAKIS, Inria, Université Cote d’Azur, France

Ours (93 fps)
Train: 5Tmin, PSNR: 25.2

Ours (135 fps)
Train: 6min, PSNR: 23.6

InstantNGP (9.2 fps) Plenoxels (82 fps) Mip-NeRF360 (0.071 fps)
Tram: 7min, PSNR: 22.1 Tram: 26min, PSNR: 21.9 Train: 48h, PSNR: 24.3

Ground Truth

—

g Projection m

i e N
eees —P| Initialization |—» /

Adaptive &

Differentiable
Tile Rasterizer

' ..
Clone Optimization
Continues
Optimization
Contmues

Under-
Reconstruction

Over
Reconstruction

[Szeliski & Tonnesen, SG’92]

Image

SfM Points 3D Gaussians

Density Control ‘

— Operation Flow

— Gradient Flow
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SMERF: Streamable ... Radiance Fields

Richard Szeliski

SMEREF: Streamable Memory Efficient Radiance Fields
for Real-Time Large-Scene Exploration

Daniel Duckworth!* Peter Hedman?* Christian Reiser?4° Peter Zhizhin?
Jean-Frangois Thibert? Mario Lucic! Richard Szeliski? Jon Barron?

! Google DeepMind % Google Research % Google Inc.
4 Tiibingen AI Center ® University of Tiibingen
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SMERF: Streamable ... Radiance Fields

SMEREF: Streamable Memory Efficient Radiance Fields
for Real-Time Large-Scene Exploration
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.. Wrapping up ...
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Outline

* Image-Based Rendering
* Lumigraphs, Light Fields, Sprites with Depth, and Layers

* Virtual Viewpoint Video
* 360° and 3D Video

* 3D Photos % ' ; .
* Reflections and transparency e g——

* Neural rendering
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3D for Image-Based Rendering & Novel View Synth.

* Many real-world, highly used applications in:
* Video Processing
* Computational Photography
 Virtual Reality

* Many remaining challenges
* Specularities and reflections
» Textureless and thin object

Thank you
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