
Geometrically Constrained Structure from

Motion: Points on Planes

Richard Szeliski and P. H. S. Torr

Microsoft Research, One Microsoft Way, Redmond, WA 98052, USA,
szeliski-philtorr@microsoft.com,

http://www.research.microsoft.com/research/vision/

Abstract. Structure from motion algorithms typically do not use exter-
nal geometric constraints, e.g., the coplanarity of certain points or known
orientations associated with such planes, until a final post-processing
stage. In this paper, we show how such geometric constraints can be
incorporated early on in the reconstruction process, thereby improving
the quality of the estimates. The approaches we study include hallu-
cinating extra point matches in planar regions, computing fundamental
matrices directly from homographies, and applying coplanarity and other
geometric constraints as part of the final bundle adjustment stage. Our
experimental results indicate that the quality of the reconstruction can
be significantly improved by the judicious use of geometric constraints.

1 Introduction

Structure from (image) motion algorithms attempt to simultaneously recover
the 3D structure of a scene or object and the positions and orientations of the
cameras used to photograph the scene. Algorithms for recovering structure and
motion have many applications, such as the construction of 3D environments and
pose localization for robot navigation and grasping, the automatic construction
of 3D CAD models from photographs, and the creation of large photorealistic
virtual environments.

Structure from motion is closely related to photogrammetry, where the 3D
location of certain key control points is usually known, thereby allowing the
recovery of camera pose prior to the estimation of shape through triangulation
techniques. In structure from motion, however, very few constraints are usually
placed (or assumed) on the geometric structure of the scene being analyzed.
This has encouraged the development of mathematically elegant and general
formulations and algorithms that can be applied in the absence of any prior
knowledge.

In practice, however, structure from motion is often applied to scenes which
contain strong geometric regularities. The man made world is full of planar
structures such as floors, walls, and tabletops, many of which have known ori-
entations e.g. horizontal, vertical or known relationships e.g. parallelism and
perpendicularity. Even the natural world tends to have certain regularities, such
as the generally vertical direction of tree growth, or the existence of relatively
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flat ground planes. A quick survey of many recent structure from motion papers
indicates that the test data sets include some very strong regularities (mostly
horizontal and vertical planes and lines) which are never exploited [22,2], except
perhaps for a final global shape correction.

In this paper, we argue using external geometric knowledge can never de-
crease the quality of a reconstruction so long as this knowledge is applied in a
statistically valid way. Rather than developing a single algorithm or methodol-
ogy, we examine a number of different plausible ways to bring geometric con-
straints to bear, and then evaluate these empirically. In this way, we hope to
elucidate where geometric constraints can be used effectively. Our experiments
demonstrate that hallucinating additional correspondences in areas of known
planar motion, and applying higher order constraints such as perpendicularities
between planes, can lead to significantly better reconstruction.

After a brief review of related literature in Section 2, we present the ba-
sic imaging equations, develop the relationships between point positions in two
views, and show how this reduces to a homography for the case of coplanar points
(Section 3). In Section 4 we preview the three main approaches we will use to
solve the structure from motion problem when subsets of points are known to lie
on planes: augmenting planes with additional sample points before computing
the fundamental matrix (Section 5); using homographies to directly compute
the fundamental matrix (Section 6); using plane plus parallax techniques (Sec-
tion 7); and performing global optimization (bundle adjustment) (Section 8). In
Section 9 we discuss how additional knowledge about the planes (e.g., perpen-
dicularity constraints) can be used to improve the solution. Section 10 presents
our experimental setup . We close with a discussion of the results, and a list of
potential extensions to our framework, including the important case of line data.

2 Previous Work

There has been a large amount of work on recovery of structure and motion from
image sequences (A good introductory text book on the subject is [4]). However,
relatively little work has been done on incorporating prior geometric knowledge
(e.g., the coplanarity of points, or known feature orientations) directly into the
reconstruction process.

There has been some work in exploiting the motion of one or more planes for
recovering structure and motion. Luong and Faugeras [14] show how to directly
compute a fundamental matrix from two or more of the homographies induced
by the motions of planes within the image. This technique however is very noise
sensitive. Plane plus parallax technique directly exploit a known dominant pla-
nar motion to compute the epipole(s) and perform a projective reconstruction
[11,17,10]. However, none of these approaches incorporate the geometric con-
straints of coplanarity in a statistically optimal fashion.
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3 General Problem Formulation

Structure from motion can be formulated as the recovery of a set of 3-D structure
parameters {xi = (Xi, Yi, Zi)} and time-varying motion parameters {(Rk, tk)}
from a set of observed image features {uik = (uik, vik, 1)}. In this section, we
present the forward equations, i.e., the rigid body and perspective transforma-
tions which map 3-D points into 2-D image points. We also derive the homography
(planar perspective transform) which relates two views of a planar point set.

To project the ith 3-D point xi into the kth frame at location uik, we write

uik ∼ VkRk(xi − tk), (1)

where ∼ indicates equality up to a scale, Rk is the rotation matrix for camera k,
tk is the location of its optical center, and Vk is its projection matrix (usually
assumed to be upper triangular or some simpler form, e.g., diagonal). In most
cases, we will assume that R0 = I and t0 = 0, i.e., the first camera is at the
world origin. The location of a 3D point corresponding to an observed image
feature is

xi = wikR−1
k V−1

k uik + tk, (2)

where wik is an unknown scale factor.
It is useful to distinguish three cases, depending on the form of Vk. If Vk is

known, we have the calibrated image case. If Vk is unknown and general (upper
triangular), we have the uncalibrated image case, from which we can only recover
a projective reconstruction of world [4]. If some information about Vk is known
(e.g., that it is temporally invariant, or that it has a reduced form), we can apply
self-calibration techniques [7,12].

The motion of a point between two images k and l can thus be written as

uik ∼ VkRk(wilR−1
l V−1

l uil + tl − tk) ∼ H∞
kl uil + w−1

il ekl, (3)

with Rkl = RkR−1
l . The matrix H∞

kl = VkRklV−1
l is the homography (planar

perspective transform) which maps points at infinity (w−1
il = 0) from one image

to the next, while ekl = VkRk(tl − tk) is the epipole which is the vanishing
point of the residual parallax vectors once this planar perspective motion has
been subtracted (the epipole is also the image of camera k’s center in camera l’s
image, as can be seen by setting wil → 0).

When the cameras are uncalibrated, i.e., the Vk can be arbitrary, the homog-
raphy H∞

kl cannot be uniquely determined, i.e., we can add an arbitrary matrix
of the form eklvT to H∞

kl and subtract a plane equation vT uk from w−1
il and still

obtain the same result. More globally, the reconstructed 3D shape can only be
determined up to an overall 3D global perspective transformation (collineation)
[4,19].

The inter-image transfer equations have a simpler form when x is known to
lie on a plane n̂Tx− d = 0. In this case, we can compute wil using

n̂T xi − d = wiln̂TR−1
l V−1

l uil + n̂T tl − d = 0,
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or
w−1

il = n̂TR−1
l V−1

l uil/(d− n̂T tl) = d−1
l n̂TR−1

l V−1
l uil,

where dl = d − n̂T tl is the distance of camera center l (tl) to the plane (n̂, d).
Substituting w−1

il into (3) and multiplying through by dl, we obtain [24]

uik ∼ (H∞
kl + d−1

l ekln̂TR−1
l V−1

l )uil. (4)

Letting ñl = V−T
l Rln̂ be the plane normal in the lth camera’s (scaled) coordi-

nate system, we see that the homography induced by the plane can be written
as

Hkl ∼ H∞
kl + d−1

l eklñT
l (5)

i.e., it is very similar in form to the projective ambiguity which arises when
using uncalibrated cameras (this also forms the basis of the plane plus parallax
techniques discussed below).

4 Structure from Motion with Planes

In the remainder of this paper, we develop a number of techniques for recovering
the structure and motion of a collection of points seen with 2 or more cameras.
In addition to being given the estimated position of each point in two or more
images, we also assume that some of the points are coplanar. We may also be
given one or more image regions where the inter-frame homographies are known,
but no explicit correspondences have been given.

Given this information, there are several ways we could proceed.

1. We can, of course, solve the problem ignoring our knowledge of coplanarity.
This will serve as our reference algorithm against which we will compare all
others.

2. We can hallucinate (additional) point matches based on the homographies
which are either given directly or which can be computed between collections
of coplanar points.

3. We can re-compute the 2D point locations so that the estimated or computed
homographies are exactly satisfied.

4. We can use the homographies induced by the planes in the image to estimate
the fundamental matrix, and thence structure.

5. We can use plane + parallax techniques to recover the camera geometry, and
after that the projective 3D structure.

6. We can perform a global optimization (bundle adjustment), using the knowl-
edge about coplanarity as additional constraints to be added to the solution.

To illustrate these algorithms, we initially use two simple data sets (Figure
1):

1. a collection of n points lying in a fronto-parallel plane with m points lying
on a closer fronto-parallel plane;
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front (camera) top (orthographic) front (camera) top (orthographic)
(a) (b)

Fig. 1. Experimental datasets (front and top views): Front view shows the
location of the points projected into image 1 (black symbol) and image 2 (grey
symbol). Top view shows the relative 3d disposition of the points in orthographic
projection from above. (a) n = 5 points lying on a plane with m = 4 points lying
in front (b) n = 4 points on each face of a trihedral vertex. For our experiments,
we use t0 = 6 and rotate the data around the vertical axis through 10◦.

2. a trihedral vertex with n points on each of the three faces, with two of the
points on each face being located along the common edge.

Although we could, we will not use data sets where homographies are directly
given. Instead, we compute whatever homographies we need from the (noisy)
2D point measurements, and use these as inputs. A more detailed explanation
of our data and methodology is given in Section 10.

5 Fundamental Matrices from Point Correspondences

Referring back to the basic two-frame transfer equation (3), we can pre-multiply
both sides by [ekl]×, where [v]× is the matrix form of the cross-product operator
with vector v, to obtain

[ekl]×uik ∼ [ekl]×VkRklV−1
l uil

(since [ekl]× annihilates the ekl vector on the right hand side). Pre-multiplying
this by uT

ik, we observe that the left-hand side is 0 since the cross product matrix
is skew symmetric, and hence

uT
ikFkluil = 0, (6)

where
Fkl ∼ [ekl]×VkRklV−1

l = [ekl]×H∞
kl (7)

is called the fundamental matrix [4]. The fundamental matrix is of rank 2, since
that is the rank of [ekl]×, and has seven degrees of freedom (the scale of F is
arbitrary).

When the camera calibration is known, we can premultiply screen coordinates
by V−1 (i.e., convert screen coordinates into Euclidean directions), and obtain
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the simpler essential matrix, E ∼ [tkl]×Rkl, which has two identical non-zero
singular values, and hence 5 degrees of freedom (the fundamental matrix has 7).

The fundamental matrix or essential matrix approach to two-frame structure
from motion is one of the most widely used techniques for structure from motion,
and some recent modifications have made this technique quite reliable in practice
[23,25]. The essential matrix method was first developed for the calibrated image
case [13]. This method was then generalized to the fundamental matrix approach
[3,9], which can be used with uncalibrated cameras.

Once the fundamental (or essential) matrix has been computed, we can es-
timate ekl [23,25], and then compute the desired homography H∞

kl = [ekl]×Fkl.
The 3D location of each point can then be obtained by triangulation, and in our
experiments, this can be compared to the known ground truth.

As mentioned earlier, when we know that certain points are coplanar, we
can use this information in one of two ways: (1) hallucinate (additional) point
matches based on the homographies; or (2) re-compute the 2D point locations
so that the estimated or computed homographies are exactly satisfied.

5.1 Hallucinating Additional Correspondences

The first approach proves to be useful in data-poor situations, e.g., when we
only have four points on a plane, and two points off the plane. By hallucinating
additional correspondences, we can generate enough data (say, two additional
points on the plane) to use a regular 8-point algorithm. If it helps for data poor
situations, why not for other situations as well (say, eight points grouped onto
two planes)? Eventually, of course, the new data must be redundant, but at what
point? Methods which exploit homographies directly [14] (Section 6) indicate
that there are six independent constraints available from a single homography.
Is this so when the data is noisy?

Let’s get a feel for how much additional points help by running some exper-
iments. Table 1 shows the results of adding p hallucinated points per plane to
both of our test data sets (bi-plane and trihedral),1 and then running an 8-point
algorithm to reconstruct the data [8,25]. For the initially underconstrained data
sets (n = 4, m = 2 bi-plane and n = 4 trihedral), and even for the minimally
constrained data sets (n = 4, m = 4 bi-plane), adding enough hallucinated points
to get more than the minimum required 8 provides a dramatic improvement in
the quality of the results. On the other hand, adding hallucinated points to data
set which already have more than 8 points only gives a minor improvement.
This suggests that having more than the minimal number of sample points is
more important than fully exploiting all of the constraints available from our
homographies.

1 The n = 6, m = 2 and n = 4, m = 2 data sets actually only have a single plane for
which a homography can be computed.
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data set n m p N method Euclidean affine co-planarity

plane + 2pts 4 2 2 8 “8 pt” F 0.0651 0.0130 0.0023
” 4 2 0 6 plane + ‖ax 0.0651 0.0130 0.0024

plane + 2pts † 6 2 0 8 “8 pt” F 0.1879 0.0430 0.0149
” 6 2 1 9 ” 0.1482 0.0285 0.0158
” 6 2 0 8 plane + ‖ax 0.1185 0.0184 0.0105

2 ‖ planes † 4 4 0 8 “8 pt” F 0.1382 0.0335 0.0141
” 4 4 1 10 ” 0.0858 0.0235 0.0128
” 4 4 2 12 ” 0.0702 0.0200 0.0100
” 4 4 0 8 plane + ‖ax 0.1709 0.0395 0.0077

2 ‖ planes 5 5 0 10 “8 pt” F 0.0538 0.0226 0.0144
” 5 5 0 10 reproject 0.0484 0.0189 0.0114
” 5 5 0 10 H → F 0.5516 0.3698 0.0163
” 5 5 0 10 plane + ‖ax 0.0673 0.0189 0.0079
” 5 5 0 10 bundle adj. 0.0467 0.0170 0.0092
” 5 5 0 10 plane enf. 0.0392 0.0117 0.0000
” 5 5 0 10 plane constr. 0.0384 0.0081 0.0000

6 ‖ planes 4 4 0 24 “8 pt” F 0.0761 0.0234 0.0074
” 4 4 0 24 H → F 0.9459 0.7652 0.0088
” 4 4 0 24 plane + ‖ax 0.8145 0.5312 0.0078

tilted cube 4 4 1 10 “8 pt” F 0.1549 0.0307 0.0091
” 4 4 2 13 ” 0.1301 0.0265 0.0076
” 4 4 0 7 H → F 0.1383 0.0237 0.0079
” 4 4 0 7 plane + ‖ax 0.2070 0.0411 0.0087

tilted cube 5 5 0 10 “8 pt” F 0.1460 0.0295 0.0110
” 5 5 1 13 ” 0.1263 0.0256 0.0111
” 5 5 0 10 H → F 0.1014 0.0213 0.0093
” 5 5 0 10 plane + ‖ax 0.1657 0.0348 0.0107

† Randomized data point placement

Table 1. Reconstruction error for various methods of structure estimation. n
and m are defined in Figure 1, p is the number of extra hallucinated points,
and N is the total number of points. The Euclidean and affine reconstruction
errors are for calibrated cameras. The coplanarity error measures the Euclidean
distance of points to their best-fit plane (calibrated reconstruction).

5.2 Reprojecting Points Based on Homographies

A second approach to exploiting known coplanarity in the data set is to perturb
the input 2D measurements such that they lie exactly on a homography. This
seems like a plausible thing to do, e.g., projecting 3D points onto estimated
planes is one way to “clean up” a 3D reconstruction. However, it is possible that
this early application of domain knowledge may not be statistically optimal or
even admissible. Let’s explore this idea empirically.
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The simplest way to perform this reprojection is to first compute homogra-
phies between a plane in the kth frame and the 0th frame, and to then project
the points from the first frame into the kth frame using this homography. This is
equivalent to assuming that the points in the first frame are noise-free. Another
approach is to find u∗ik such that they exactly satisfy the homographies and
minimize the projected errors. Since the latter involves a complicated minimiza-
tion, we have chosen to study the former, simpler idea. Methods to incorporate
coplanarity as a hard constraint on the solution will be presented in Section 9.

Table 1 shows some results of reprojecting points in the second frame based on
the computed homographies (row reproject). A slight decrease in error is visible,
but this technique does not yield as dramatic improvements as hallucinating
additional correspondences.

6 Fundamental Matrices from Homographies

Assuming that we are given (or can estimate) the inter-frame homographies
associated with two or more planes in the scene, there is a more direct method
for computing the fundamental matrix [14]. Recall from (5) that the homography
associated with a plane n̂T x − d = 0 is Hkl ∼ H∞

kl + d−1
l eklñT and that the

fundamental matrix (7) associated with the same configuration has the form
Fkl ∼ [ekl]×H∞

kl . The product

HT
klFkl ∼ H∞

kl
T [ekl]×H∞

kl + d−1
l ñeT

kl[ekl]×H∞
kl = H∞

kl
T [ekl]×H∞

kl

is skew symmetric, and hence

S = HT
klFkl + FT

klHkl = 0. (8)

Writing out these equations in terms of the entries hij and fij of H and F (we’ll
drop the kl frame subscripts) gives us

sij =
∑

k

hkifkj + fkihkj = 0, ∀(i, j). (9)

Each known plane homography H contributes six independent constraints on F,
since the matrix HTF + FT H is symmetric, and hence only has six degrees of
freedom. Using two or more plane homographies, we can form enough equations
to obtain a linear least squares problem in the entries in F.

While this idea is quite simple, Luong and Faugeras [14] report that the
technique is not very stable (it only yields improvements over a point-based
technique for two planes). Can we deduce why this method performs poorly?

Instead of using (8) to solve for F, what if we “hallucinate” point corre-
spondences based on the known homographies. Say we pick an image point
u = (u0, u1, u2) and project it to u′ = (v0, v1, v2) = Hu, i.e., vk =

∑
i hkiui.

The resulting constraint on F (6) has the form
∑
lj

vkfkjuj =
∑
ijk

fkjhkiuiuj = 0. (10)
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By choosing appropriate values for (u0, u1, u2), we can obtain elements (or
combinations of the elements) of the symmetric S matrix in (8). For example,
when u = δi, we get

∑
k fkihki = 1

2sii. Thus, three of the constraints used
by [14] correspond to sampling the homography at points (1, 0, 0),(0,1,0), and
(0, 0, 1), two of which lie at infinity! Similarly, for u = δi + δj , i 6= j, we get∑

k fkihki+fkihkj+fkjhki+fkjhkj = 1
2sii+ 1

2sjj +sij. Thus, the remaining three
constraints used by [14] are linear combinations of constraints corresponding to
three sample points, e.g., (0, 1, 1), (0, 1, 0), and (0, 0, 1). Again, each constraint
uses at least one sample point at infinity! This explains why the technique does
not work so well. First, the homographies are sampled at locations where their
predictive power is very weak (homographies are most accurate at predicting the
correspondence within the area from which they were extracted). Second, the
resulting sample and projected points are far from having the kind of nice unit
distribution required for total least squares to work reasonably well.

To demonstrate the overall weakness of this approach, we show the recon-
struction error using the method of [14] in Table 1. From these results, we can
see that the approach is often significantly inferior to simply sampling the same
homography with sample points in the interior of the region from which it was
extracted. The six-plane data set (Figure 2) is representative of the kind of
data used in [14], where they partitioned the image into regions and then scat-
tered coplanar points within each region. For the trihedral data set, however,
the homography-based method works quite well. To obtain comparable results
using the point hallucination method, quite a few additional sample points need
to be used. At the moment, we do not yet understand the discrepancy between
the fronto-parallel and trihedral data set results. A plausible conjecture is that
fronto-parallel data, whose “vanishing points” lie at far away from the optical
center, are more poorly represented by an H matrix.

front (camera) top (orthographic)

Fig. 2. Points clustered onto 6 fronto-parallel planes

7 Plane plus Parallax

Another traditional approach to exploiting one or more homographies between
different views is to choose one homography as the dominant motion, and to
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compute the residual parallax, which should point at the epipole. Such plane plus
parallax techniques [11,17] are usually used to recover a projective description
of the world, although some work has related the projective depth (magnitude
of the parallax) to Euclidean depth.

To compute the fundamental matrix, we choose one of the homographies,
say the first one, and use it to warp all points from one from to the other. We
then compute the epipole by minimizing the sum of squared triple products,
(xi,x′i, e)2, where xi and xi are corresponding (after transfer by homography).2

Once e has been determined, we can compute Fkl.
Table 1 shows the results of using the plane plus parallax to recover the 3D

structure for some of our data sets. The method works well when the points are
mostly on the plane used for the homography (n = 4 or 6, m = 2), but not
as well when the points are evenly distributed over several planes. This is not
surprising. Plane plus parallax privileges one plane over all others, forcing the
fundamental matrix to exactly match that homography. When the data is more
evenly distributed, a point-based algorithm (with hallucination, if necessary)
gives better results.

8 Global Optimization (Bundle Adjustment)

The final technique we examine in this paper is the one traditionally used by
photogrammetrists, i.e., the simultaneous optimization of 3D point and camera
placements by minimizing the squared error between estimated and measured
image feature locations.

There are two general approaches to performing this optimization. The first
interleaves structure and motion estimation stages [8]. This has the advantage
that each point (or frame) reconstruction problem is decoupled from the other
problems, thereby solving much smaller systems. The second approach simul-
taneously optimizes for structure and motion [19]. This usually requires fewer
iterations, because the couplings between the two sets of data are made explicit,
but requires the solution of larger systems. In this paper, we adopt the former
approach. To reconstruct a 3D point location, we minimize

∑
k

(
uik − pT

k0x̃i

pT
k2x̃i

)2

+
(

vik − pT
k1x̃i

pT
k2x̃i

)2

(11)

where pkr are the three rows of the camera or projection matrix

Pk = Vk[Rk| − tk]

and x̃i = [xi|1], i.e., the homogeneous representation of xi. As pointed out
by [25], this is equivalent to solving the following overconstrained set of linear
equations,
2 The triple product measures the distance of e from the line passing through xi and

x′i, weighted by the length of this line segment.
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D−1
ik (pk0 − uikpk2)T x̃i = 0 (12)

D−1
ik (pk1 − vikpk2)T x̃i = 0,

where the weights are given by Dik = pT
k2x̃i (these are set to Dik = 1 in the

first iteration).3 Notice that since these equations are homogeneous in x̃i, we
solve this system by looking for the rightmost singular vector of the system of
equations [6].

The same equations can be used to update our estimate of Pk, by simply
grouping equations with common k’s into separate systems. When reconstruct-
ing a Euclidean (Vk[Rk| − tk]) description of motion, the estimation equations
become more complicated. Here, applying a linearized least squares like the
Levenberg-Marquardt algorithm is more fruitful. Let us assume the following
updates

Rk ← Rk(I + [ωk]×), tk ← tk + δtk. (13)

We can compute the terms in

Pk + δPk = Vk[Rk(I + [ωk]×)| − (tk + δtk)] (14)

as functions of Vk,Rk, tk, i.e., the Jacobian of the twelve entries in δPk with
respect to ωk and δtk. We can then solve the system of equations

D−1
ik x̃T

i (δpk0 − ûikδpk2) = uik − ûik (15)
D−1

ik x̃T
i (δpk1 − v̂ikδpk2) = vik − v̂ik,

substituting the δpk with their expansions in the unknowns (ωk, δtk). The rota-
tion and translation estimates can then be updated using (13), using Rodriguez’s
formula for the rotation matrix [1],

R← R
(
I + sin θ[n̂]× + (1 − cos θ)[n̂]2×

)

with θ = ‖ω‖, n̂ = ω/θ. A similar approach can be used to update the focal
length, or other intrinsic calibration parameters, if desired.

The above discussion has assumed that each point can be solved for inde-
pendently. What about points that are known to be coplanar? Here, we need to
incorporate constraints of the form n̂T

p xi − dp = 0, {i ∈ Πp}. Two approaches
come to mind. The first is to alternate a plane estimation stage with the point re-
construction stage. The second is to simultaneously optimize the point positions
and plane equations. We describe the former, since it is simpler to implement.

Fitting planes to a collection of 3D points is a classic total least squares
problem [6]. After subtracting the centroid of the points, xp, we compute the

3 The Levenberg-Marquardt algorithm [15] leads to a slightly different set of equations

D−1
ik (pk0 − ûikpk2)

T δx̃i = uik − ûik,

where ûik is the current estimate of uik and δx̃i is the desired update to x̃i. In
practice, the two methods perform about as well [25].
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singular value decomposition of the resulting deviations, and choose the right-
most singular vector as the plane equation. We then set dp = n̂T

p xp.
To enforce this hard constraint on the point reconstruction stage, we add the

equation n̂T
p xi−dp = 0. to the system (13) as a linear constraint [6]. Since points

may end up lying on several planes, we use the method of weighting approach to
constrained least squares [6, p. 586], i.e., we add the constraints n̂T

p xi − dp = 0
to the set of equations for xi with a large weight (currently 260 ≈ 1020).

Table 1 shows the results of applying bundle adjustment to the initial struc-
ture and motion estimates computed using an 8-point method. For fronto-parallel
planes, bundle adjustment significantly reduces the reconstruction error. For the
trihedral data set, it has little effect. Notice, however, the large discrepancy be-
tween the Euclidean and affine reconstruction errors for the trihedral data. This
suggests that the major source of error is probably a bas-relief ambiguity [20],
which is not removable even with a statistically optimal technique such as bundle
adjustment. Enforcing coplanarity (“plane enf.” in Table 1) does not significantly
reduce the reconstruction error, although it is successful at reducing coplanarity
error to 0 (which may be desirable to make the data appear less “wobbly”).

9 Constraints on Planes

In addition to grouping points onto planes, we can apply additional constraints
on the geometry of the planes themselves. For example, if we know that two or
more planes are parallel, then we can compute a single normal vector for all the
“coplanar” points after their individual centroids have been subtracted.

The line corresponding to method “plane constr.” in Table 1 shows the result
of applying a parallelism constraint to our fronto-parallel data set. The results
are not all that different from not using the constraint.

If we know that certain planes are perpendicular, this too can be enforced
during the normal computation stage. If two or three planes are known to be
mutually orthogonal, we can concatenate the normals into a matrix, compute
its SVD, replace the singular values with 1, and reconstitute the matrix.

Applying this idea to the trihedral data set as part of the bundle adjustment
loop yields dramatically lower reconstruction errors (Table 1). Adding the per-
pendicularity constraint removes most of the bas-relief ambiguity (uncertainty)
in the reconstruction, with the resulting reconstruction error being more closely
tied to the triangulation error.

Lastly, if planes have explicitly known orientations (e.g., full constraints in
the case of ground planes, or partial constraints in the case of vertical walls),
these too can be incorporated. However, a global rotation and translation of
coordinates may first have to be applied to the current estimate before these
constraints can be enforced.
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Fig. 3. Point layouts for n = 1 . . . 9 points

10 Experiments

We have performed an extensive set of experiments to validate our algorithms
and to test the relative merits of various approaches. Our experimental software
first generates a 3D dataset in one of three possible configurations: a set of
fronto-parallel planes filling the field of view (Figure 1a), a set of fronto-parallel
planes in non-overlapping regions of the image (Figure 2), or a trihedral corner
(Figure 1b). On each of the planes, we generate from 1 to 9 sample points, in
the configurations shown in Figure 3.

The 3D configuration of points is projected onto the camera’s image plane.
For our current experiments, we rotate the data around the y axis in increments
of 10◦, and place the camera 6 units away from the data (the data itself fills
a cube spanning [−1, 1]3). We then generate 50 noise-corrupted versions of the
projected points (for the experiments described in this paper, σ = 0.2 pixels, on
a 200 × 200 image), and use these as inputs to the reconstruction algorithms.
The mean RMS reconstruction error across all 50 trials is then reported.

The reconstruction errors are computed after first finding the best 3D map-
ping (Euclidean/similarity or affine) from the reconstructed data points onto the
known ground truth points. The columns labeled “Euclidean” and “affine” in
Table 1 measure the errors between data reconstructed using calibrated cameras
and the ground truth after finding the best similarity and affine mappings. The
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coplanarity error is computed by finding the best 3D plane fit to each copla-
nar set of reconstructed points (calibrated camera), and then measuring the
distances to the plane.

Table 1 is a representative sample from our more extensive set of experiments.

11 Discussion and Conclusions

In this paper, we have presented a number of techniques for exploiting the ge-
ometric knowledge typically available in structure from motion problems. In
particular, we have focused on how to take advantage of known coplanarities
in the data. Our techniques also enable us to directly exploit homographies be-
tween different regions of the image, when these are known. Of the techniques
tried, hallucinating additional correspondences is simple to implement, and often
yields a significant improvement in the results, especially in situations which are
initially data-poor. Reprojecting the data to exactly fit the homography does not
appear to significantly improve the results. Using homographies to directly esti-
mate the fundamental matrix sometimes works, but also often fails dramatically;
using hallucinated correspondences seems like a more prudent approach.

Bundle adjustment improves the results obtained with the 8-point algorithm,
but often not by that much. Adding coplanarity as a hard constraint does not
seem to make a significant difference in the accuracy of the reconstruction, al-
though it does make the reconstruction look smoother. Adding parallelism as a
geometric constraint does not seem to improve the results that much. On the
other hand, adding perpendicularity constraints for the trihedral data set leads
to a dramatic decrease in reconstruction error (most likely due to a reduction
in the bas-relief ambiguity). As mentioned above, plane plus parallax works well
when the points are mostly on the plane used for estimating the homography,
but not as well when the points are evenly distributed over several planes.

These results suggest that adding hallucinated correspondences to planar
grouping of points (or hallucinating correspondences in regions with known ho-
mographies) is a useful and powerful idea which improves structure from motion
results with very little additional complexity. Similarly, geometric constraints
(coplanarity, parallelism, and perpendicularity) can be added to the bundle ad-
justment stage with relatively little effort, and can provide significantly improved
results.

11.1 Future Work

This paper has concentrated on the geometric constraints available from know-
ing that certain points are coplanar. Similar constraints are available for points
which are known to be collinear. The situation, however, is often a little differ-
ent: line matching algorithms often do not localize the endpoints of lines in each
image, so there may be no initial points in correspondence, nor is it possible
to hallucinate such correspondences prior to an actual reconstruction. However,
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exploiting known orientations for lines (e.g., vertical and horizontal), and geo-
metric constraint between their orientations (parallelism and perpendicularity)
is indeed possible, and can lead to algorithms which reconstruct a 3D scene from
a single view.

In terms of points on planes, our current results could be extended in a num-
ber of directions. First, we have not yet explored the use of multi-frame algebraic
approaches such as trilinear tensors [18]. Second, we have not explored multi-
frame bundle adjustment techniques, nor have we explored the use of robust
estimation techniques [23]. Hallucinating correspondences should be equally ap-
plicable to all three of these approaches. We would also like to better understand
the differences in results obtained from fronto-parallel and oblique planes, and
in general to anticipate the expected accuracy of results for various geometric
configurations and camera motions.
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