Fast Surface Interpolation
Using Hierarchical Basis Functions

Richard Szeliski
Artificial Intelligence Center
SRI International
Menlo Park, CA 94025

Abstract

The rapid solution of surface interpolation and other reg-
ularization problems on massively parallel architectures is an
important problem within computer vision. Fast relaxation al-
gorithms can be used to intergrate sparse data, resolve ambigu-
ities in optic flow fields, and guide stereo matching algorithms.
In the past, multigrid techniques have been used in order to
speed up the relaxation. In this paper, we present an alternative
to multigrid relaxation which is much easier to implement. Our
approach uses conjugate gradient descent in conjunction with
a hierarchical (multiresolution) set of basis functions. The re-
sulting algorithm uses a pyramid to smooth the residual vector
before the new direction is computed. We present simulation
results which show the speed of convergence and its dependence
on the choice of interpolator, the number of smoothing levels,
and other factors. We also discuss the relationship of this ap-
proach to other multiresolution relaxation and representation
schemes.

1 Introduction

Visual surface interpolation [1] is an important component
of low-level vision algorithms. It allows sparse information
— such as that obtained from feature-based stereo or mo-
tion — to be fused into a continuous visual surface. Surface
interpolation is just one of a number of low-level vision al-
gorithms that have been formalized using the theory of
regularization [2, 3]. Other problems that have been stud-
ied using this formalism include scale-space stereo [4] and
depth-from-motion [5].

The discrete formulation of surface interpolation and
other regularization problems leads to the solution of a
very large number of sparse linear equations (or equiva-
lently, the minimization of an energy functional composed
of local energy terms). These equations map naturally
onto massively parallel architectures (such as the Con-
nection Machine [6]), where each processor represents one
node (variable) in the discrete formulation. Iterative al-
gorithms can be used to solve this system of equations;
however the convergence of these algorithms towards the
true solution can be extremely slow. To speed up the con-
vergence, multigrid techniques have been used successfully
[7, 8]. Conjugate gradient descent and adaptive Chebychev
acceleration methods have also been investigated [9, 10].

Recently, Yserentant has devised a new relaxation
technique which combines elements of both multigrid re-
laxation and conjugate gradient descent [11]. His approach

CH2752-4/89/0000/0222$01.00 © 1989 |EEE

222

uses a set of hierarchical basis functions, which are more
global than the usual nodal basis set. This allows the algo-
rithm to converge in O(log n) steps (where n is the number
of nodes), rather than the usual O(n). The hierarchical ba-
sis function representation is similar to the multiresolution
pyramidal representations used in image processing.

In this paper, we extend this approach to a wider vari-
ety of problem domains (such as piecewise-continuous thin
plate models) and interpolants. We also develop an ef-
ficient version of the conjugate gradient algorithm which
only requires a single sweep up and down a multiresolu-
tion pyramid [12]. This algorithm works well in practice,
is easy to implement, and can be applied to other problems
such as 3-D surface modeling [13].

We begin this paper in Section 2 with a review of sur-
face interpolation and other regularization problems and
their discrete formulation. In Section 3 we present hier-
archical basis functions, along with efficient parallel algo-
rithms for converting between the hierarchical and nodal
representations. In Section 4 we review the.usual conju-
gate gradient descent algorithm and present our new algo-
rithm which uses smoothing of the residual to accelerate
convergence. In Section 5 we present some graphical ex-
amples of the new technique and numerical examples of
convergence rates. In Section 6 we discuss the advantages
of the new approach over multigrid relaxation and discuss
its relationship to other concurrent multigrid algorithms
[14]. We conclude that our new algorithm yields signifi-
cant speedups over single-resolution relaxation techniques
and is suitable for massively parallel implementation.

2 Surface interpolation

To formulate the surface interpolation problem, we com-
bine two weak constraints (penalty functionals): a data
compatibility constraint, and a smoothness constraint.
The data compatibility constraint measures the distance
between the collection of depth values {p;} = {(ui,vi,d:)}
and the interpolated surface f(u,v) using an energy mea-
sure

1 2

ga(fi{p:}) = §Zwi(f(unv-')~di) 1
1

where the weights w; are inversely related to the variance

of the measurements (w; = o] %). The smoothness con-

straint, which is usually expressed as a functional or norm

&)

)
e
%

O
O
(XD
%’

0
X\
OO0
(XX
KXY
QRRNLNANXD
OO0

.6.0.00¢

OO0

BN

OOOO0OO

O

9,
O
OOOOOOO0

)

®,
O

QOOOOOOO

OOOOOOOOOO00

Q

0’00000

OOOOIONNK

*,

O
000009

o

v
5
%
8000
&

%
50

QOO0

004

O
9,

v,
)

OO0
O
X)
¢

OO0

Q)

X
AEOSN0
OB

%

X

&

5

%&%
’§¢
OO0
O
)
0%’;;

\/

)
O

0
’
QOO0
QOOOOOOO0)

O

XA

A/

é

O

Q)

Q
X
v
é

O

50
0%
XXX
&
ettt to oo e tetetete

&

O

O

O
'0
¢
S

§
..
%
S

)

Q)

0
)

&
o
&80
XX
AR
%

&
el

&

Pobek
Q08K

&

X

5
%
:0

Q O
o
S
5

O
()
4
Q)

O
O

)
é

O

%

e

5

&
&

e,

Figure 1: Sample data points

of f(u,v), encodes the variation in the surface. An exam-
ple of a possible smoothness functional is the “thin-plate
under tension” (3]

&N =3 [[otw)is = olisi + £
+7(w,v)fly + 20 + foltdude (2)

where p(u,v) is a “rigidity” function, and 7(u,v) is a
“tension” function . The rigidity and tension functions
can be used to allow depth (p(u,v) = 0) and orientation
(7(u,v) = 0) discontinuities.

To find the approximating spline, the two constraints
(1) and (2) are combined into a single energy functional

E(f) = Ea(f;{pi}) + A&(S) ®3)

which is then minimized. As an example of a controlled-
continuity spline, consider the nine data points shown in
Figure 1. The interpolated solution using a thin plate
model is shown in Figure 2. Note that a depth discon-
tinuity has been introduced along the left edge and an
orientation discontinuity along the right.

To implement the minimization of (3) on a digital or
analog computer, it is necessary to discretize the domain
of the solution f(u,v) using a finite number of nodal vari-
ables. In this paper, we use a rectangular domain on which
a rectangular “fne grained” mesh has been applied. The
fine grained nature of the mesh leads to a natural imple-
mentation on a massively parallel array of processors.

When fihite element analysis is applied to the smooth-
ness constraints defined by quadratic functionals! such as
(2), the resulting energy is a quadratic form

Ey(x) = 5xT Apx @

1 Actually, (2) is quadratic only if p and 7 are fixed.

223

OO

X
XX 0000

SRK
NNAN ¢

N

Z

U

Figure 2: Interpolated solution (thin plate with disconti-
nuities)

where x is the vector of nodal variables, i.e., x = {f(z,7)}
The prior model matrix Ay is extremely sparse, having at
most 13 entries per row. The quadratic structure of the
energy function is true even for the controlled-continuity
spline (see [3] or [15] for implementation details). The data
constraint in (1) can also be re-written as a quadratic form
in terms of x and the zero-padded vector of depth values
d’

Ea(x,d) = 3(x ~)T Aa(x - d), %)

The diagonal matrix Aq consists of the data weights w;
where data points coincide with nodal variables and Os
elsewhere.

Using (4) and (5), we can write the combined energy
(8) in discrete form as

1
E(x) = 5xTAx —xTb+¢ (6)

where

A=MXA,+Aq and b=A4d

This energy function has a minimum at
x* = A7'b. (7)

Other low-level vision problems which are formulated using
regularization result in a similar set of equations.

The solution of the linear system of equations (7) can
be found using either direct or iterative methods. The
problem with straightforward relaxation schemes such as
Gauss-Seidel is that are very slow to converge (Figure 3).
More sophisticated algorithms such as conjugate gradient
can give better performance (Figure 4), but may still not
be fast enough. To develop a faster algorithm, we must
use a different set of basis functions for the finite element
discretization.

Figure 3: Gauss Seidel relaxation after 100 iterations

3 Hierarchical basis functions

The discrete equations which we developed in the previ-
ous section were obtained by using nodal basis functions,
which have local support. This makes the computation of
the discrete equations easier (more uniform), and results
in sparse equations, which is essential for massively paral-
le! implementations. An alternative to these nodal basis
functions are the hierarchical basis functions developed by
Yserentant [11].

Consider the problem of representing a one-
dimensional function on the interval [0,4] using 5 nodal
variables. If we are using linear interpolation, the set of
5 nodal basis functions would be as shown in Figure 5a.
Here, each basis function is a triangle function of extent
2 (except for the end functions, which are half-triangles).
The hierarchical basis for this same domain would be the
set of 5 functions shown in Figure 5b. Here, the basis func-
tions are grouped into “levels”, with the functions at the
“higher” (coarser) levels having a larger extent.

We can easily convert between the nodal basis repre-
sentation x (a 5 element vector) and the hierarchical nodal
basis y with a simple linear (matrix) transform

(8)

Because of the structure of the basis function, the matrix
S can be decomposed into a series of very sparse matrices

$=8:5,...8., (9)

where L is the number of levels in the hierarchical basis
set. The columns of S give the values of the hierarchical
basis functions at the nodal variable locations.

A set of nodal basis functions can just as easily be
constructed for a two-dimensional domain. In his paper,
Yserentant uses recursive subdivision of triangles to ob-
tain the nodal basis set. The corresponding hierarchical

x = Sy.

224

NN\

Figure 4: Conjugate gradient relaxation example after 100
iterations

bo h by b3 by
Nodal
1 - I f i - 1
bo b4
] ! !
f T 0 1 1
b2
} N 1 5 .
by b3
Hierarchical

Figure 5: Nodal and hierarchical basis functions

basis then consists of the top-level (coarse) triangulariza-
tion, along with the subtriangles that are generated each
time a larger triangle is subdivided. Linear interpolation
is used on a triangle each time it is subdivided. In this
paper, we generalize this notion to arbitrary interpolants
defined over a rectangular grid. Each node in the hierar-
chical basis is assigned to the level in the multiresolution
pyramid where it first appears. We select an interpolation
function which defines how each level is interpolated to the
next finer level before the “new” node values are added in.

The resulting algorithms for mapping between the hi-
erarchical and nodal basis sets are simple and efficient. We
use

procedure S

forl=L—1downtol
for i € My
for j € N;
z(i) = z(8) + w(%)z(5)
end S

to convert from the hierarchical to the nodal basis set. In
this procedure, which goes from the coarsest level (I =
L) to the finest (I = 1), each node is assigned to one of
the level collections M;. Each node also has a number of
“neighboring nodes” N; on the next coarser level which
contribute to its value during the interpolation process.
The w(z;j) are the weighting functions which depend on
the particular choice of interpolation function (these are
the off-diagonal terms in the S; matrices).

We will also use the adjoint of this operation

procedure ST

forl=1toL-1
for i € M;
for j € M;
2(j) = () + w(ii ()

end ST
in the conjugate gradient descent algorithm which we de-
velop in the next section.

These mapping algorithms are easy to code (once the
interpolation functions have been precomputed) and re-
quire very few computations to perform. On a serial ma-
chine, these procedures use O(n) operations (multiplica-
tions and additions), where n is the number of nodes. On
a parallel machine, O(L) parallel steps are required, where
L ~ Llogn is the number of levels in the pyramid. This is
the same number of steps as is needed to perform the global
summations (inner products) used in the conjugate gradi-
ent algorithm. Note that although we have defined the
hierarchical basis over a pyramid, it can actually be rep-
resented in the same space as the usual nodal basis, and
the transformations between bases can be accomplished
“in place”.

Once we have defined a set of hierarchical basis func-
tions through a suitable choice of w(4;7) and L, we can
substitute x = Sy into (6) to obtain the new energy equa-
tion

1
E(y) = 5y"(S"AS)y - yT(8™b) + ¢

225

1 - o
= EyTAy —yTh+e¢ (10)

(in this paper, we use the “to identify the hierarchical ba-
sis vectors and matrices). The advantage of minimizing
this new equation is that the condition number of the ma-
trix A is much smaller than that of the original matrix A
[11). This means that iterative algorithms such as conju-
gate gradient will converge much faster.

Unfortunately, the A matrix is not as sparse as the
original matrix A, so that a direct minimization of (10) is
not practical. Instead, as we will see in the next section,
we will use the recursive mapping algorithms S and ST
in conjunction with the original matrix A and vector b to
compute the required residuals and inner products.

4 Conjugate gradient descent

Conjugate gradient descent is a numerical optimization
technique closely related to steepest descent algorithms
[16]. At each step k, a direction dy is selected in the state
space, and an optlma.l sized step is taken in this direction.
In steepest descent, the direction is always equal to the
current gradient of the function being minimized. In con-
jugate gradient descent, we modify this direction so that
successive directions are conjugate with respect to A, i.e.,
dit1Ady =0.

A description of the usual (nodal basis) conjugate gra-
dient descent is shown in the left column of Figure 6. Hav-
ing selected a direction dg, we choose the optimal step size
ay so as to minimize AE(xx + axdi). This involves com-
puting the product of the sparse matrix A and the dx,
and the inner product of the resulting vector wi and d.
On a fine-grained parallel architecture, the matrix oper-
ation is computable in constant time (dependent on the
size of the “neighborhoods” or “molecules” in A) and the
inner product summation is computable in logn steps us-
ing a summing pyramid. After updating the new state, we
compute the new residual rx4; and find the value of Sx+1
which will make the new and old directions conjugate.

For a quadratic energy equation such as (6) or (10),
the conjugate gradient algorithm is guaranteed to converge
to the correct solution in n steps, in the absence of roundoff
error. As we mentioned in the previous section, however,
we can obtain much faster convergence to an approximate
solution if we minimize (10) instead of (6). The result-
ing algorithm is shown in the right column of Figure 6.
In this algorithm, we update the state of the hierarchical
basis vector yx by computing the residual vector fr and
direction vector dk To implement the matrix multiplica-
tions Ad and Ayy, we use the mapping operations S and
ST before and after the matrix product with the original
sparse matrix A. In the process, we convert the quantities
d; and y; into the nodal representations dy and x. The
overall algorithm thus uses two calls to S ai.u two calls to
ST to compute the required quantities for the conjugate
gradient descent.

Inspection of the algorithm shown in Figure 6 shows
that it can be simplified to reduce the number of mappings

Nodal basis conjugate gradient

Hierarchical basis conjugate gradient

0. initialize ry using 6. and set dy = rg 0.
la.
1 wr = Adx 1b.
lc.
2 O!E = dy-wg = d’{Adk 2.
3. aiv = dp T = J{rk . 3.
4.1 ar = alf/aP 4.
5a.
5. Tp41 = Tk + ardy 5b.
6. Tk+1 = A:IJ);.H -b 6a.
6b.
6c.
7. ﬂ,ﬁ_l = Tk41 Wk = T{_HAdk 7.
8 By = BN, /P 8.
9. dkt1 = Tr41~ Brtrdi 9a.
9b.
10. loop to 1. 10.

t AE(z+ad) = 2 dTAd + adTr

initialize 7o using 6a. and 6b. and set dy = 7,

dr = Sdi
wp = Adp = ASdy
by = STwy = (STAS)ds
01,? = t{k cWy = (S_ldk)T(Ska) = dy - wi
aiv = dy-fr= (S—ldk)T(STrk) =dg-ri
o = of /af
Yk+1 = Yk + apdy
Tit1 = Sykt1 = Tk + ordy
Tk+1 = A1'k+1 —b
Frer = STrigy = (STAS)yssr — STh
Frpr = Sfip
ﬂﬁ}-l = 7A‘k+1 . 'lf)k = ff_,_lSka = fk+1 C Wk
ﬁ,,k-"l = ﬁﬁ}.l/akD
detr = g1 — Bryade
dikt1 = Sdi =7r41 — Bryrdi
loop to 1b.

Figure 6: Algorithms for nodal and hierarchical conjugate gradient descent

required. We note that in steps 2 and 3 the quantities aiv

and oP (the numerator and denominator of &) can be
computed just as easily using the regular nodal basis rep-
resentation. Upon reflection, this result is not surprising,
since once the direction d (or equivalently d) has been
selected, the size of the step must be the same independent
of which representation is used. Similarly, in step 7 we can
replace the inner product fx41 - Wg41 with the inner prod-
uct Fx41+ Wiy, where Fr41 = SSTri4; is the “smoothed”
residual vector. If we now use step 5b instead of 5a¢ and
use 9b instead of 9a and la, we obtain an algorithm which
is nearly identical to the original conjugate gradient al-
gorithm. The only difference is that we now smooth the
residual vector ri+; using a sweep up (S7) and then back
down (5) the pyramid to obtain the vector Fx41. This
smoothed vector dictates the new direction.

5 Evaluation

To evaluate the performance of our new algorithm, we ran
a number of experiments on synthetic data sets. The set
of points used in each run is the one shown in Figure 1.
For each of the three models tested (membrane, thin plate,
and controlled-continuity thin plate), the optimal solution
x* for the 33 x 33 grid was computed by using 1000 iter-
ations of conjugate gradient descent. For each experiment
(defined by a suitable choice of interpolator and number
of levels), the root mean squared (RMS) error

ek = [x¢ —x"|/Vn

was plotted as a function of the number of iterations k.

226

1771/
'/

Figure 7: Hierarchical conjugate gradient (L = 4) relax-
ation after 100 iterations

Figure 7 shows the state of the hierarchical conjugate
gradient algorithm (L = 4) after 100 iterations. Figure 8
shows the effects of varying the number of smoothing levels
in the pyramid (L) on the convergence rate. The topmost
curve (L = 1) is the convergence rate of the usual nodal
basis conjugate gradient descent algorithm. The surpris-
ing result is that the fastest convergence is obtained when
L =4 and L = 5 instead of L = 6 (the full pyramid). Ini-

-.|
A\ ~
0.0316 -_"\t =:‘__“ hS
“.
S
0.0100 |
0.0032 L L=1
...... L=2
eee- L=3
..... L=4 .
0.0010 L e... L=5 ‘~.\
_____ L=6 N
00003 e ——————+——+—
0 20 40 60 80 100 120 140 160 180 200

iterations

Figure 8: Algorithm convergence as a function of L;
controlled-continuity thin plate, bilinear interpolator.

tially, the larger number of smoothing levels used leads to
a faster convergence. As time goes on, however, the large
number of levels may tend to over-smooth the residual vec-
tor. It is possible that the optimum number of levels to be
used is related to the density of the underlying data points,
but this remains to be verified empirically. Another pos-
sibility, which we are currently investigating, is to adjust
the number of levels adaptively during the relaxation.

Figure 9 shows the effects of using different interpola-
tors on the convergence rate (for this plot, the best value of
L, usually 4 or 5, was used). The bilinear interpolator and
bilinear interpolator with discontinuities seem to work the
best. The convergence rates for the thin plate without dis-
continuities and continuous membrane are even faster [17].
Compared to coarse-to-fine Gauss-Seidel relaxation, the hi-
erarchical conjugate gradient algorithm is much faster {17}.
A comparison with full-multigrid [7] has not yet been per-
formed.

6 Discussion

From the experiments described in the previous section, we
see that the hierarchical basis conjugate gradient algorithm
is dramatically faster than single-resolution conjugate gra-
dient (which is itself much faster than Gauss-Seidel). Sim-
ilar speedups are available using multigrid techniques [7].
The biggest advantage of this new approach over multigrid
techniques is the ease of implementation and its suitability
for massively parallel architectures.

When designing a multigrid algorithm, we must first
devise a “hierarchy of problems”, i.e., for each level, we
must re-derive the finite element equations (this often in-

227

0.0100

0.0032 1L

0.0010 L

0.0003 L AN

0.0001

Il Il Il Il Il
T T T T T

80 100 120 140

0 20

+—
160 180 200
iterations

I I
T T
40 60

Figure 9: Algorithm convergence as a function of interpo-
lator; controlled-continuity thin plate, L = 4 or 5.

volves averaging data from the finer level). We also have to
specify both the injection (subsampling) and prolongation
(interpolation) operations, as well as choose an inter-level
coordination scheme. With hierarchical basis functions,
only a single interpolation function needs to be specified.
There is no need to explicitly build a pyramid for represen-
tation or computation (this is also true for some multigrid
techniques). Most of the computation proceeds in paral-
lel at the fine level, with only occasional excursions up or
down the “virtual pyramid” for summing or smoothing.
Since we can choose the interpolation function (hierarchi-
cal basis) independent of the problem being solved, we have
much greater flexibility. For example, wavelets [18] could
be used as an alternative to the polynomial bases which we
have studied in this paper. The hierarchical basis function
idea can easily be extended to domains other than two-
dimensional surfaces. It could just as easily applied to 3-D
elastic models which use cylindrical coordinates [13], or to
3-D elastic net models built from a recursively tessellated
sphere [15].

The hierarchical basis function representation is an
example of a relative multiresolution representation, where
the surface being modeled is obtained by summing the val-
ues at the various pyramid levels. Since the number of
variables is the same as in the fine level representation and
the transformation between nodal and hierarchical bases
is invertible, it is easy to formulate problems on the fine
grid and solve them on the pyramid. An alternative to
this approach is to use a full pyramid, which has more de-
grees of freedom than the original problem. To make the
problem well-posed, we must equip each level with its own

independent smoothness constraint, and require that the
sum of the levels match the data constraints [15]. This al-
ternative is currently being investigated, along with other
concurrent multigrid algorithms [19].

7 Conclusions

In this paper, we have presented a new algorithm for effi-
ciently solving surface interpolation and other regulariza-
tion problems. The algorithm is based on the hierarchi-
cal basis functions devised by Yserentant [11]. Because of
the recursive formulation of the basis set, conversion be-
tween the usual nodal basis and the hierarchical basis is
extremely efficient. This allows us to devise a new con-
jugate gradient descent algorithm which uses a smoothed
version of the residual vector to determine the new candi-
date direction. This new algorithm is easy to implement,
both on serial and parallel machines. On a serial machine,
the smoothing step takes O(n) operations, where n is the
number of nodes. On a parallel machine, O(logn) parallel
steps must be used.

The new conjugate gradient algorithm has been tested
on a number of synthetic data sets. It performs much bet-
ter than single resolution schemes and coarse-to-fine re-
laxation. The optimal number of levels to be used in the
smoothing pyramid and the optimal choice of interpolator
seem to be problem dependent. Fortunately, this choice
does not significantly affect the speedups available with
this technique.

Because of the simplicity of the central idea in the
algorithm (the multiresolution smoothing of the residual
vector), this same algorithm is applicable to a wide variety
of numerical relaxation problems, including those involving
3-D energy-based models. We are currently investigating
other multiresolution relaxation schemes, in order to find
efficient relaxation algorithms which can be implemented
on parallel architectures and to build better multiresolu-
tion descriptions of the visual world.

References

[1] W. E. L. Grimson. An implementation of a compu-
tational theory of visual surface interpolation. Com-
puter Vision, Graphics, and Image Processing, 22:39-
69, 1983.

T. Poggio, V. Torre, and C. Koch.
tional vision and regularization theory.
317(6035):314-319, 26 September 1985.
D. Terzopoulos. Regularization of inverse visual prob-
lems involving discontinuities. IEEE Transactions on
Pattern Analysis and Machine Intelligence, PAMI-
8(4):413-424, July 1986.

A. Witkin, D. Terzopoulos, and M. Kass. Signal
matching through scale space. International Journal
of Computer Vision, 1:133-144, 1987.

L. Matthies, R. Szeliski, and T. Kanade. Incremental
estimation of dense depth maps from image sequences.
In IEEE Computer Society Conference on Computer

Computa-
Nature,

3

4

5

228

Vision and Pattern Recognition, pages 366-374, Ann
Arbor, MI, June 1988. IEEE Computer Society Press.
[6] W. D. Hillis. The Connection Machine. MIT Press,
Cambridge, Massachusetts, 1985.
[7] W. Hackbusch. Multigrid Methods and Applications.
Springer-Verlag, Berlin, 1985.
[8] D. Terzopoulos. Image analysis using multigrid re-
laxation methods. IEEE Transactions on Pattern
Analysis and Machine Intelligence, PAMI-8(2):129~
139, March 1986.
D. J. Choi. Solving the depth interpolation problem
on a fine grained, mesh- and tree-connected SIMD
machine. In Image Understanding Workshop, pages
639-643, Los Angeles, February 1987. DARPA.
T. Simchony, R. Chellappa, and Z. Lichtenstein. Pyra-
mid implementation of optimal step conjugate search
algorithms for some computer vision problems. In Sec-
ond International Conference on Computer Vision,
pages 580-590, Tampa, Florida, December 5-8 1988.
IEEE Computer Society Press.
H. Yserentant. On the multi-level splitting of finite
element spaces. Numerische Mathematik, 49:379-412,
1986.
A. Rosenfeld, editor. Multiresolution Image Process-
ing and Analysis, New York, 1984. Springer-Verlag.
D. Terzopoulos, A. Witkin, and M. Kass. Symmetry-
seeking models and 3D object reconstruction. Interna-
tional Journal of Computer Vision, 1:211-221, 1987.
D. Terzopoulos. Concurrent multilevel relaxation. In
Image Understanding Workshop, pages 156-162, Mi-
ami Beach, Florida, December 1985. Science Applica-
tions International Corporation.
R. Szeliski. Bayestan Modeling of Uncertainty in Low-
Level Vision. PhD thesis, Carnegie Mellon University,
August 1988.
W. Press et al. Numerical Recipes: The Art of Scien-
tific Computing. Cambridge University Press, Cam-
bridge, 1986.
[17] R. Szeliski. Fast surface interpolation using hierar-
chical basis functions. IEEE Transactions on Pattern
Analysis and Machine Intelligence, (submitted) 1989.
S. G. Mallat. A compact multiresolution representa-
tion: the wavelet model. In IEEE Computer Soci-
ety Workshop on Computer Vision, pages 2-7, Miami
Beach, FL, December 1987. IEEE Computer Society
Press.
R. Szeliski and D. Terzopoulos. Parallel multigrid
algorithms and applications to computer vision. In
Fourth Copper Mountain Conference on Multigrid
Methods. (Preprints), April 9-14 1989.

9

(10]

(11}

(12]

(13]

(14]

[15

(16]

(18]

Acknowledgements

I would like to thank Olof Widlund for bringing Prof.
Yserentant’s paper to my attention, and Demetri Ter-
zopoulos and the two anonymous reviewers for their com-
ments on this paper.

