To appear at the IEEE Workshop on Representations of Visual Scenes, June 24, 1995, Cambridge, MA 1

Direct Methods for Visual Scene Reconstruction

Richard Szeliski and Sing Bing Kang

Digital Equipment Corporation
Cambridge Research Lab
One Kendall Square, Bldg. 700
Cambridge, MA 02139

Abstract

There has been a lot of activity recently surrounding the re-
construction of photorealistic 3-D scenes and high-resolution
images from video sequences. In this paper, we present some
of our recent work in this area, which is based on the regis-
tration of multiple images (views) in a projective framework.
Unlike most other techniques, we do not rely on special fea-
tures to form a projective basis. Instead, we directly solve
a least-squares estimation problem in the unknown structure
and motion parameters, which leads to statistically optimal
estimates. We discuss algorithms for both constructing pla-
nar and panoramic mosaics, and for projective depth recovery.
‘We also speculate about the ultimate usefulness of projective
approaches to visual scene reconstruction.

1 Introduction

The recovery of 3-D scene information from multiple views
has long been one of the central problems in computer vi-
sion. Over the last decade, many researchers observed that
such a full reconstruction may not be necessary for many
vision-based tasks, e.g., face or object recognition. More re-
cently, however, there has been a resurgence of interest in 3-
D scene reconstruction, motivated both by improvements in
algorithms and processing speeds, and the emergence of in-
teresting applications such as virtual reality and model-based
video compression.

Traditionally, 3-D scene reconstruction has been the focus
of both stereo and structure from motion, two subfields with
complementary sets of assumptions and techniques. In this
paper, we present some of our recent techniques in this area,
which blend aspects of both stereo and structure from mo-
tion {14, 15, 13]. We call our techniques direct, since they
both directly minimize an image-based misregistration mea-
sure (without special algebraic or geometric transformations),
and because they are (usually) based on the direct minimiza-
tion of intensity errors.

Our techniques share a number of characteristics which dis-
tinguish them from traditional approaches to structure from
motion and stereo. Whenever possible, we use many views
instead of just two views, since this leads to more reliable es-
timates. We formulate our reconstruction algorithms using
projective geometry, which allows them to work with uncali-
brated cameras as well as cameras with time-varying parame-
ters (e.g., zoom). We also formulate our problems as the direct

(iterative) minimization of image-based measures of misreg-
istration, instead of using algebraic manipulations which can
result in marked sensitivity to noise. Under small Gaussian
noise in either feature position or intensity samples, such tech-
niques are statistically optimal. Finally, our projective depth
recovery algorithm yields a dense estimate of scene depth, un-
like most structure from motion algorithms.

The current focus for our work has been the creation of re-
alistic high-resolution imagery and 3-D environments from
low-resolution, uncalibrated video. Our applications range
from automatically creating 360° panoramas from video or
photographs (e.g., of an office or a whiteboard), to recon-
structing the 3-D shape of individual objects. Our long term
goal is to automatically construct 3-D indoor and outdoor en-
vironments for applications such as home sales, virtual super-
market shopping, and tele-travel (Section 6).

‘We begin the paper with the construction of high-resolution
image mosaics from low-resolution video (Section 2). We
then present our algorithm for projective depth recovery, and
discuss its application to view interpolation and extrapolation
(Section 3). For those cases when it is necessary to boot-
strap the intensity-based shape from motion algorithm with a
feature-based algorithm, we present our affine and projective
structure from motion algorithms (Section 4). Finally, we dis-
cuss possible visual scene representations based on our tech-
niques, and some potential applications.

2 Video Mosaics

The first technique we describe automatically aligns and
composites multiple images into high-resolution mosaics
[13]. Building aerial photomosaics has long been a staple of
photogrammetry, but only recently have fully automated tech-
niques for building mosaics been developed. Most techniques
still only estimate pure translations or affine transformations
[4], but some recent work has dealt with the full projective
case [8]. Our approach is, to our knowledge, the first to com-
bine full projective warping with near real-time performance.

Our techniques for automatically aligning images into pho-
tomosaics exploit the particularly simple form of the motion
field resulting from two specific imaging situations. The first
case is when the images cover a portion of a planar scene, e.g.,
a whiteboard, a desktop, or a wall. The second case is when
the camera rotates around an axis through its focal point (or
when all scene objects are very far from the camera). Under
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Figure 1: Whiteboard image mosaic example. The central square shows the size of one input image (¢ile).

either of these two conditions, the inter-frame motion can be
represented by a iomography, i.e., a linear function of projec-
tiveimage coordinates u’ = Mu (see [13] for a simple proof).

In the subsections below, we describe our algorithm in more
detail, and give examples of its application to the specific
cases of planar scenes, panoramas, and multiresolution mo-
saics.

2.1 Planar Scenes

The compositing of multiple images into larger mosaics re-
quires two basic steps: an image-to-image alignment (prefer-
ably to sub-pixel precision), and a method for seamlessly
blending images. Many different solutions are possible for the
first problem, including matching four or more feature points
and then solving for the homography, or manually adjusting
image positions using a blink comparator.

The approach we have taken is to directly minimize the dis-
crepancy in intensities between pairs of images after applying
the transformation we are recovering. Our technique does not
require the location and correspondence of feature points, and
is statistically optimal in the vicinity of the true solution [14].
Let us write the 2-D homography as

o — o +may; +ma o = m3Ti + MalY; + My ()
mezi +mry; + 1770 mezi +may; + 1
Our technique minimizes the sum of the squared intensity er-
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over all corresponding pairs of pixels ¢ which are inside both
images. Once we have found the best transformation M, we

can warp image I' into the reference frame of I using M and
then blend the two images together. To reduce visible arti-
facts, we weight images being blended together more heavily
towards the center, using a bilinear weighting function.

To perform the minimization, we use the Levenberg-
Marquardt iterative non-linear minimization algorithm (see
[14, 13] for details). The advantage of using Levenberg-
Marquardt over straightforward gradient descent is that it con-
verges in fewer iterations.

Unfortunately, both gradient descent and Levenberg-Mar-
quardt only find locally optimal solutions. If the motion be-
tween successive frames is large, we use hierarchical match-
ing, which first registers smaller, subsampled versions of the
images where the apparent motion is smaller. For even larger
displacements, we use phase correlation, which is a technique
based on 2-D Fourier transforms [6].

To demonstrate the performance of our algorithm, we digi-
tized an image sequence with a camera panning over a white-
board. Figure 1 shows the final mosaic of the whiteboard, with
the location of a constituent image shown as a white outline.
This mosaic is 1300x2046 pixels, based on compositing 39
NTSC (640x480) resolution images.

2.2 Panoramic Mosaics

In order to build a panoramic image mosaic, we rotate a
camera around its optical center. Images taken in this man-
ner are retated by 2-D projective transformations, just as in the
planar case [13]. Intuitively, we cannot tell the relative depth
of points in the scene as we rotate (there is no motion paral-
lax), so they could be located on a plane.
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Figure 2: A portion of the Bryce Canyon mosaic. Because of the large motions involved, we cannot use a single plane for the
whole mosaic. Instead, we can select different tiles as base images.

Figure 3: Circular panoramic image mosaic example (office interior). A total of 36 images were pasted onto a cylindrical viewing
surface.



To appear at the IEEE Workshop on Representations of Visual Scenes, June 24, 1995, Cambridge, MA 4

Figure 4: Zoom sequence. The outlines show the extents of the four constituent images.

More formally, the 2-D transformation denoted by M isre-
lated to the 3 x 3 viewing matrices V and V' and the inter-
view rotation matrix R by [13]

M=V'RV~1 3)

(see Section 3 for definitions of V and R). In the case of
a completely calibrated camera, M is a pure rotation matrix
(only three unknowns). If the focal lengths in the two im-
ages are unknown, then these two parameters must also be es-
timated. In either case, we can register any two overlapping
images using the same technique as for the planar mosaic case.

How do we represent a panoramic scene composited using
our techniques? One approach is to divide the viewing sphere
into several large, potentially overlapping regions, and to rep-
resent each region with a plane onto which we paste the im-
ages. Examples of such mosaics are given in [13]. Another
approach is to compute the relative position of each frame rel-
ative to some base frame, and to periodically choose a new
base frame for doing the alignment. We can then re-compute
an arbitrary view on the fly from all visible pieces, given a par-
ticular rotation matrix R and zoom factor f. This is the ap-
proach used to composite a large wide-angle mosaic of Bryce
Canyon, as shown in Figure 2.

A third approach is to use a cylindrical viewing surface to
represent the image mosaic [8]. In this approach, we map
world coordinates p = (z, y, ) onto 2-D cylindrical screen
locations u = (#,v), with 8 = tan"(z/z) and v =
y/+/z? + z2. Figure 3 shows a complete circular panorama
of an office unrolled onto a cylindrical surface.

2.3 Multiresolution Mosaics

The techniques described so far have used a single-resolution
compositing surface to blend all of the images together. In
many applications, we may wish to have spatially-varying

amounts of resolution, e.g., for zooming in on areas of inter-
est.

The modifications to the basic planar mosaic building algo-
rithm are relatively straightforward, and affect only the image
blending portion of the algorithm. To create the new compos-
ite mosaic, we weight each image by an amount proportional
to the difference in scale from the desired view.

Figure 4 shows the result of compositing four images of
a city scene taken from an office tower. These images were
taken with a hand-held 35mm camera equipped with a 28-
200mm zoom lens, and the resulting 4” x 6” photographs were
scanned in at 300dpi. The multiresolution mosaic has a 7:1
variationin original image scales. The video sequence seen by
a user zooming in on the central feature of interest (the State
House) shows an even wider range of scales. To zoom from an
NTSC resolution wide-angle shot encompassing all four im-
ages down to a slightly magnified (4:1) version of the most
detailed image involves a scaling of over 100:1.

3 Projective Depth Recovery

‘While mosaics of flat or panoramic scenes can be useful for
some applications, other applications require the recovery of
dense depth maps. When the camera motion is known, the
problem of depth map recovery is called stereo reconstruc-
tion (or multi-frame stereo if more than two views are used).
When the camera motion is unknown, we have the more diffi-
cult structure from motionproblem [2, 15]. In this section, we
present our solution to this latter problem based on recovering
projective depth, which is particularly simple and robust and
fits in well with the methods already developed in this paper.

To formulate the projective structure from motion recov-

ery problem, we first write the perspective projection from
world coordinates p = (X,Y, Z, W) to screen coordinates
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u=(z,y, w)as
u=V[R|t]p, @

where V is the upper triangular viewing matrix, and R and
t are the usual rotational and translational components of the
camera motion [2]. Without loss of generality, we can set
R = TIandt = O in the first frame. The world coordi-
nates corresponding to an optical ray (in the first image) pass-
ing through u are therefore

]
P= d
where d is the projective depth of the world point [15]. The

coordinates corresponding to a pixel u with projective depth
d in some other frame can therefore be written as

u' = V'RV~ lu + dV't = Mu + di, 5)

i.e., as the summation of a planar projective transformation
(homography) and a depth-dependent parallax motion (in the
direction of the epipole). This formulation has formed the ba-
sis of both our projective structure from motion algorithms
[15] and our projective dense depth estimation algorithm [14].
More recently, it been used by other researchers under the
names of affine depth [12] and planar parallax [10, 7] (see
Section 4.2 for amore detailed discussion of projective depth).
The above formulation extends naturally to multiframe
depth recovery by simply associating a separate M; and t;
with each frame and minimizing the summed intensity error

E= ZZ[Ij(m‘Iija vi;) — To(zi, %i))? = ZZ&%. (6)

J#0 i J#0 i

To recover the parameters in M; and t; for each frame along
with the depth values d; (which are the same for all frames),
we use the same Levenberg-Marquardt algorithm as before.
Once the projective depth values are recovered, they can be
used directly in viewpoint interpolation (using a new M and
t), or they can be converted to true Euclidean depth using at
least 4 known depth measurements [2].

In more detail, we can write the projection equation (5) as

N mz; +miy; + i + 1
ma; + m@y + 40 d; 4 my)
Vi = @)

@z, 4 Py + 8004, + 1

To estimate the unknown parameters, we alternate iterations
of the Levenberg-Marquardt algorithm over the motion pa-
rameters {mg’ ), .. .,tg’ )} and the depth parameters {d;}. In
our current implementation, in order to reduce the total num-
ber of parameters being estimated, we represent the depth map
using a tensor-product spline, and only recover the depth es-
timates at the spline control vertices (the complete depth map
is available by interpolation) [14].

Figure 5 shows an example of using our projective depth re-
covery algorithm. The image sequence was taken by moving
the camera up and over the scene of a table with stacks of pa-
pers (Figure 5a). The resulting depth-map is shown in Figure
5b as intensity-coded range values.

3.1 View Interpolation

Once a dense depth map has been recovered for the scene, we
can use this information to synthesize (interpolate or extrapo-
late) novel views [1, 11, 13]. When a Euclidean depth map is
available, regular 3-D graphics can be used for the view syn-
thesis [1]. In other situations, corresponding points must be
found between the original views and the novel view in order
to compute the required transformations [11], or the projective
depth description must be converted to a Euclidean one [2].

A simpler approach, which often produces results of ac-
ceptable quality, is to simply re-scale the projective depths by
an amount which yields a sensible 3-D scene when viewed
from moderate viewing angles. This is the approach we used
to generate the pictures in Figure 5. Figure Sc shows the origi-
nal intensity image texture mapped onto the surface seen from
a side viewpoint which is not part of the original sequence
{an example of view extrapolation). Figure 5d shows a set of
grid lines overlayed on the recovered surface to better judge
its shape.

4 Affine and Projective Structure from
Motion

In the preceding section, we ignored the problem of local min-
ima in the search space. Our experience has been that our di-
rect intensity-based projective depth recovery algorithm con-
verges to a good solution with only a small hint as to the cam-
era translation direction (e.g., vertical for Figure 5). In some
situations, however, it may be necessary to bootstrap the dense
depth recovery algorithm by first estimating the camera mo-
tion using a feature-based structure from motion algorithm,

Traditional structure from motion algorithms attempt to re-
cover a Euclidean reconstruction of the world [2]. More re-
cent algorithms, motivated by the difficulty of obtaining met-
rically accurate 3-D reconstructions, have attacked the prob-
lem of recovering an affine [5, 16] or projective [3, 9, 11] de-
scription. The advantage of this approach is that it does not
require camera calibration and can lead to more reliable es-
timates [3]. It may also be sufficient for many vision-based
tasks such as re-projection and object recognition [11].

Our structure from motion algorithm [15] directly mini-
mizes (using Levenberg-Marquardt) the squared difference
between predicted and measured screen coordinates

B=3 3 o5 l(ws = o) + (v ~ )] ®)
i i

where (u;;, v;;) is the screen location of the 4th feature in the
jth frame, and (z};, yi;) are given by (7). Each measurement

2,
can be weighted by its inverse variance o2, which can be set
to zero for missing measurements, Such as weighting leads to
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Figure 5: Depth recovery example—table with stacks of papers: (a) input image, (b) intensity-coded depth map (dark is farther
back) (c) texture-mapped surface seen from novel viewpoint, (d) gridded surface.

a statistically optimal (maximum likelihood) estimate of the
unknown parameters,

For our feature-based algorithm, we optimize over all
frames (including frame zero), and the z; and y; coordinates
of the 3-D points in (7) are also treated as unknowns. How-
ever, since we set Mo = 0 and £, = 0 as before, the (z;, ¥;)
values remain close to the screen positions measured in frame
zero. Unlike most other projective reconstruction algorithms,
we do not choose a set of feature points as a projective basis.
This allows the algorithm to work with tracks where features
may disappear at any time, and avoids the sensitivity of the
results to the choice of basis points.

4.1 Algorithm initialization

To initialize our non-linear least-squares algorithm, we have
tried two approaches (a third approach to bootstrapping the
algorithm, which we have not investigated, is to use funda-
mental matrices). The first is to simply set (z;, yi,di) =
(ui0, vi0,0), M; = I, and t; = 0, i.e., to set the 3-D points

to lie on a null plane, and to assume no motion. In our ex-
periments, the algorithm usually converges in under a dozen
iterations.

Our second approach, which yields much quicker results,
is to first solve for the M; by computing a planar projective
transformation, i.e., to fix (z4, i,d:) = (uio, vio, 0) and to
optimize (8). Then, a guess for the focus of expansion for each
frame, which corresponds to t;, can be computed by finding
the dominant eigenvalue of the moment matrix of the resid-
ual vectors (us; — 2451, vij — ;). 1t turns out that in the or-
thographic case, 1.e., for affine structure from motion (where
the denominators in (7) are unity), this two step approach re-
sultsin an exact solution (in the noise-free case), and is equiv-
alent to singular value decomposition [16] but at a lower com-
putational cost. For perspective projection, the planar motion
computed by the first step may not correspond to the motion of
an actual plane, but this will be corrected during the iterative
minimization, which often converges in just a single step.
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4.2 Ambiguities in solution

The projective depths d; and motion descriptors (Mj, ;)
have a four-parameter ambiguity associated with them, even
after we have set Mg = I and t¢ = 0. One of these ambigu-
ities corresponds to the scale ambiguity present in Euclidean
structure from motion, i.e., we can scale d; and t; by recipro-
cal factors and still obtain the same solution (predicted feature
positions).

In a similar manner, we can add a multiple of &, to any col-
umn of M; and modify d; appropriately, which corresponds
to adding a plane equation to the d;. This three-parameter am-
biguity corresponds to choosing the plane relative to which the
projectives depths d; are defined. Planar paraliax techniques
[10, 7] assume that this plane is the one with the dominant mo-
tion. Our structure from motion technique finds a plane which
is close to a least-squares plane fit to the depths.t

5 Representations for complex scenes

The reconstruction of 3-D scenes using a projective frame-
work raises some interesting questions about the representa-
tion of the scene. At the most primitive level, the output of
a structure from motion algorithm may just be a collection of
points and camera matrices. While this may be adequate for
certain tasks such as navigation, it is not that useful for tasks
such as view-based recognition or virtual reality.

The dense range maps available from multiframe stereo
techniques are more interesting. They can be used to synthe-
size novel views using view interpolation [1], even in the ab-
sence of full metric information [11]. For true virtual environ-
ments, however, multiple depth maps must be combined into
a richer structure, which may require segmentation.

Several alternatives exist for the representation of such en-
vironments. One possibility would be to reduce the world to
a collection of (hopefully continuous) planar surfaces [17],
which could then be texture mapped. Another possibility is to
have a collection of contiguous depth maps and images, which
could then be rendered using either conventional graphics or
multi-frame view interpolation [1]. The question of how to
merge such multiple depth maps is an active research area.
Such systems would also have to include multiresolution rep-
resentations, at least if a large range of viewing positions or
virtual camera settings were permitted. For true 3-D objects,
however, volumetric or parametric 3-D models may be the
best choice.

6 Applications

The reconstruction of visual scenes has many potential ap-
plications, including object recognition, model-based video
compression, and the construction of highly detailed virtual
environments. Our research has concentrated on this last class
of applications. In the simplest case, planar mosaics can be
used for scanning whiteboards as an aid to videoconferencing
Or as an easy way 1o capture ideas. Scanning can produce im-
ages of much greater resolution than single wide-angle lens

1We can enforce this constraint, if desired, by modifying the d; and M;
after each iteration to maintain a zero bias in the d;.

shots; the techniques developed in this paper enable any video
camera attached to a computer to be used. Piecewise planar
mosaics could also be used to model certain virtual environ-
ments, €.g., the aisles at your local supermarket.

Panoramic mosaics can have many applications, including
tele-tourism (e.g., looking at the views from the Eiffel Tower
or the rim of the Grand Canyon), education (tours of muse-
ums), and home sales (views of room interiors). True walk-
throughs of existing building or outdoor environments require
the solution of a much more difficult problem, i.c., full 3-D re-
construction. They also require the rapid display of very com-
plex scenes, for which view interpolation may be useful.

The ultimate in virtual reality systems is true telepresence,
which composites video from multiple source in real-time to
create theillusion of being in a dynamic (and perhaps reactive)
3-D environment. An example of such an application might
be to view a 3-D version of a concert or sporting event with
control over the camera shots, even being able to see the event
from the players’ point of view. Other examples might be to
participate or consult in a surgery from a remote location (tele-
medicine), or to remotely participate in a virtual classroom.

7 Discussion and Open Questions

The recent interest in projective approaches to visual scene
reconstruction and representation appears to be motivated by
two main concerns. The first is a desire to avoid camera cal-
ibration. The second is a disappointment with the (metric)
quality of the results available with Euclidean techniques.

The need for accurate camera calibration depends very
much on the task at hand. For example, robot systems that
handle or inspect parts benefit greatly from accurate calibra-
tion. On the other hand, visual servoing, which does not re-
quire precise calibration, is sufficient for robot systems that
are capable of hybrid force and position control. Accurate cal-
ibration is necessary for veridical scene reconstruction, e.g.,
for virtual reality environments and games. Of course, com-
puting a projective description first and then converting it to a
Euclidean representation later through control points may be
a reasonable approach.

We believe that the quality of Euclidean reconstructions
must be examined in more detail, since its underlying prob-
lems can also plague projective reconstruction techniques.
We see four main reasons why reconstruction techniques may
not produce reliable results: a poor choice of technique, us-
ing an inappropriate representation, using too little data, and
fundamental limitations on the achievable accuracies.

Traditionally, structure from motion algorithms have been
developed using geometric arguments about point, lines, and
planes, followed by a reduction to an algebraic formulation or
series of estimation steps. The problem with this approach is
that while geometric or algebraic constructs are correct in the
noisefree case, there is no guarantee that they witl produce
reasonable estimates for noisy data. Our approach has been
to estimate the unknown structure and motion parameters us-
ing a non-linear least-squares minimization of the image plane
measurement errors, which is statistically optimal for small
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Gaussian noise, and can be made robust against gross errors
using robust statistics. Furthermore, this approach provides
explicit measures of uncertainty in the estimates, which can be
used to great advantage when processing sequences of data.
Carefully choosing the coordinate frame for the structure
reconstruction, i.e., using an object-centered representation,
can dramatically improve the quality of Euclidean reconstruc-
tion [16, 15]. This advantage is shared by many projective re-
construction techniques, which often choose the reconstruc-
tion plane to be located near the interesting structure. Many
structure from motion algorithms are also restricted to using
only a few points or frames. Our estimation-theoretic ap-
proach encourages the use of as much redundant data as possi-
ble, and can easily accommodate missing or noisy estimates.

Finally, itis important to understand that structure from mo-
tion, and scene reconstruction in general, are fundamentally
limited in accuracy by the quality of the feature tracks, regard-
less of the choice of algorithm and representation. Therefore,
the importance of feature tracker accuracy cannot be overem-
phasized. Discarding unreliable feature tracks using robust
statistics, as is the case in our structure from motion algorithm,
will greatly improve the quality of the reconstructions.

Alarge number of open questions remain in this domain. In
terms of efficiency, there is the question of the relative accu-
racy of recursive vs. batch estimation algorithms. Within this
context, a better understanding of the structure of the uncer-
tainty (covariance) in the estimates should improve the quality
of recursive algorithms.

Another interesting question is whether the recovery of a
projective scene description is a useful intermediate step in
the process of recovering Euclidean structure. How reliable is
such an approach compared with direct Euclidean estimation?
Does it offer significant improvements in terms of speed?
What are the limitations on the accuracy of Euclidean recon-
structions, and what kind of metric information is most useful
when constructing such estimates?

To summarize, we have described our philosophy and our
algorithms in the area of scene reconstruction from multiple
views. In particular, we believe that the approach to scene
reconstruction should be dictated by the task requirements,
which is consistent with the notion of task-oriented vision.
For example, for scene interpretation tasks where relative
depths are used to qualitatively describe the spatial ordering of
objects in the scene, recovery of projective depth is adequate.
For applications such as virtual reality environment construc-
tion, Euclidean (true or scaled) is required. In either case, it
is important to understand the nature of structure recovery er-
rors both to optimize the algorithms we use and tounderstand
the fundamental limitations of these techniques.
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