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Abstract

Estimating observer motion from time-varying range data and
fusing this data into a coherent map of the environment are two impor-
tant problems in robot navigation. Current methods first determine a
correspondence between range measurements acquired from different
viewpoints, and then compute a motion estimate from this correspon-
dence. In this paper, we present an alternative technique which does
not assume that any such correspondence exists. Instcad, a smooth
surface assumption is used, i.e., the sensed points are assumed to lie
on some piecewise smooth surface. A motion estimate is obtained
by finding the geometric transformation which makes it most likely
(in a Bayesian sense) that the points came from the same surface.
We derive an energy equation which measures the distance between
the new data points and the dense interpolated depth map which is
being incrementally refined. The shape of the energy equation in
the neighborhood of the optimal motion estimate is used to com-
pute the uncertainty in the estimate. The resulting motion estimation
algorithm can be used in conjunction with other motion estimation
systems, and provides a flexible and robust method for computing
motion from sparse range data.

1 Introduction

As computer vision moves from the analysis of static images
towards full integration into real-time robotics systems, the
issues of dynamic motion estimation and on-line sensory in-
tegration are becoming increasingly important. Traditionally,
motion estimation has been performed by extracting image fea-
tures, finding correspondences, and then jointly solving for the
rigid motion and the three-dimensional position of the features
[Ullman79, Tsai84]. More recently, the advent of direct range
sensing has made it possible to determine motion directly from
a set of three-dimensional points with known correspondence
[Faugeras87]. While these motion estimation methods have
been successful in highly structured man-made environments,
they are less applicable for outdoor navigation. The unstruc-
tured nature of the outdoor environment makes it more difficult
to reliably extract features for matching, and occlusions or lim-
ited areas of overlap canse many of the sensed range points to
have no correspondence.

In this paper, we introduce a new method for determining
observer motion from sparse range data which does not assume
any correspondences between sensed points. In addition to
determining the motion, the method also “registers” the two
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sets of points so that they may be integrated into an updated
surface estimate. Qur method is based on a smooth surface
assumption, i.e., the points which are sensed with the range
finder (from two or more viewpoints) are assumed to lie on
a piecewise smooth surface. Our algorithm finds the motion
which makes it most likely that these sets of points are from
the same piecewise smooth scene. In practice, the logarithm
of the likelihood measure turns out to be closely related to
the weighted sum of squares distance between the new data
points and the current surface estimate. This method thus fits
well with incremental sensing strategies, where dense depth
estimates are obtained by integrating measurements taken from
a moving camera [Matthies88].

The method presented in this paper shows how to mea-
sure the the likelihood of a particular collection of transformed
points being properly “registered”, and how to find a locally
optimal motion estimate using gradient descent. This paper
does not, however, address the issue of how to search the large
space of possible transformations for the “best” motion. Our
method is thus meant to be used in conjunction with some
other motion estimation system — such as an inertial navi-
gation system — which is used to start the gradient descent
algorithm in the vicinity of the solution. Our method will also
work if the range of possible motions is small, which can be
ensured by sampling the data sufficiently rapidly (as is the case
in real-time robot control).

The motion estimation algorithm we develop can be ap-
plied to both mobile robot navigation and robot manipulation.
As part of a mobile robot system, the algorithm is used to refine
or improve motion estimates obtained from other sources such
as inertial navigation, dead reckoning or landmark recognition.
The algorithm also builds up and maintains a dense depth map
of the environment which can be used for integration with other
sensors. This map can either be a retinotopic (image-based)
depth map or a terrain-based elevation map [Olin88]. Our al-
gorithm is particularly well suited for terrain maps since it can
handle data points that are irnsgularly spaced (from perspective
de-projecdon), incorporate prior knowledge from cartographic
data, and fuse data with only limited areas of overlap, In robot
manipulation, our algorithm can be used to determine object
or observer motion from sparse tactile data.

The general approach used in this paper is to incremen-
tally build up a dense depth map by interpolating and integrat-
ing sparse range data, and to match new points to this surface
to perform the motion estimation. We thus start by reviewing



spline-based surface interpolation algorithms and show how
these are implemented by minimizing a quadratic energy func-
tion defined over a set of nodal variables. Next, we introduce
a Bayesian model of dense depth estimation, and show that
the posterior estimate obtained from this model is equivalent
to the interpolated surface obtained using splines. We then
derive a simple matching criterion based on the distance be-
tween the new set of points and the old interpolated surface,
and show why this criterion is sub-optimal. A statistically op-
timal criterion is then derived from the Bayesian model and is
shown t0 be a sensible generalization of the simple matching
criterion which we first proposed. Using this new criterion, we
show how to calculate the uncertainty in the motion estimate
and how to integrate this estimate with other data. We then
demonstrate the performance of our algorithm on a number of
synthetic two-dimensional range data examples. We close by
comparing our method to a number of alternative approaches,
and mention some of the possible extensions of our work.

2 Interpolating sparse data

To determine motion from a sparse set of depth values which
do not have any correspondence, we must assume that the
points have some spatial coherence or that they came from
the same smooth surface. One way to do this is to match
the points to a set of known models {Grimson84]. A more
general approach is to use two-dimensional spline interpolation
to derive a smooth surface from the sparse data. The estimate
of this surface can be refined as more data is acquired, and the
surface (or dense depth map) can be’used for integration with
other sensors,

To formulate the spline approximation problem, we com-
bine two weak constraints: a data compatibility constraint,
and a smoothness constraint. The data compatibility constraint
measures the distance between the collection of depth values
{pi} = {(xi,yi,di)} and the interpolated surface u(x,y) using
an energy measure

Eatun (90} = 3 3 wi e )~ )
i

where the weights w; are inversely related to the variance of
the measurements (w; = o 2). The smoothness constraint,
which is usually expressed as functional or norm of u(x,y),
encodes the variation in the surface. A simple example of
such a constraint is the thin plate model, whose smoothness
functional is

sp(u)=%//(u;+2u§,+u;,) dxdy. [¢))

This model can be derived using either variational principles
[Grimson83], physical models [Terzopoulos84] or regulariza-
tion [Poggio85]. In this paper, we use a thin plate with con-
trolled depth and orientation discontinuities, as discussed in
[Terzopoulos86]. This interpolator was chosen because it pro-
duces piecewise smooth (C?) surfaces. The possibility of using
different interpolators is discussed in Section 8.

To find the approximating spline, the two constraints (1)
and (2) are combined into a single energy functional

E) = Eq(u, {Pi}) + AE(w) 3
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Figure 1: One-dimensional cubic spline interpolation
A cubic spline is fit to the data points shown with x’s. The
error bars indicate the standard deviation of each measurement.

where ) is called the regularization parameter. The minimum
energy solution of (3) is called the approximating spline. Fig-
ure 1 shows a simple one-dimensional example of spline ap-
proximation. The curves drawn in this Figure are cubic splines
(piecewise cubic polynomials), and are obtained using a one-
dimensional version of the thin plate model.

To implement the minimization of (3) on a digital or ana-
log computer, it is necessary to discretize the domain of the
solution u(x, y) using a finite number of nodal variables. The
usual and most flexible approach is to use finite element analy-
sis [Terzopoulos84]. In this paper, we use a rectangular domain
on which a rectangular “fine grained” mesh has been applied.
Since the topology of this mesh is fixed, it does not depend on
the location of the data points, and can thus be used for inte-
grating data from various sensors or from various viewpoints.
The fine grained nature of the mesh also leads to a natural
implementation on a massively parallel array of processors,

When finite element analysis is applied to the smoothness
constraints defined by quadratic functionals such as (2), the
resulting energy is a quadratic form

E (u) = -;—uTA,u @
where u is the vector of nodal variables, i.e., u = {u(i,)}.
The prior model matrix A, is extremely sparse, having only
13 entries per row for a thin plate. The quadratic structure of
the energy function is true even for the controlled-continuity
spline (see [Terzopoulos84] or [Szeliski88] for implementation
details). The data constraint in (1) can also be re-written as
a quadratic form in terms of u and the zero-padded vector of
depth values d,

1 - -
Eq(u, d) = 5(u — d) Aq(u ~ d). )

The diagonal matrix A4 consists of the data weights w; where
data points coincide with nodal variables and Os elsewhere.
Using (4) and (5), we can write the combined energy as
a single quadratic form
E(u) = %uTAu —u'b+¢ 6

where

A=)A,+A; and b=Ad
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The solution of the linear system of equations (7) can be found
using either direct or iterative methods (see [Terzopoulos84]
for a survey of the latter). While the choice of solution method
is not very important in the context of this paper, we note
that iterative methods have the possibility of implementation
on fine-grained parallel machines, which may be desirable
for real-time applications. A second advantage of iterative
schemes is that they can be used in conjunction with gradient-
descent non-linear optimization techniques (Section 5).

3 Bayesian estimation

Spline-based interpolation provides one possible mechanism
for estimating a smooth surface from a sparse set of depth
values. An alternative approach is to use Bayesian modeling.
In this framework, we assume a prior distribution p(u) for the
surface that we are estimating, and model the measurement
process by a conditional probability distribution p(d[u). The
posterior distribution p(u|d) is derived from these two models
using Bayes’ Rule

p(d|u) p(u)

pd
In its usual application [Geman84], Bayesian modeling is
used to find the Maximum A Posteriori (MAP) estimate, i.e.,
the value of u* which maximizes the conditional probability
p(ujd).

For estimating a dense depth map from sparse depth mea-
surements, we will assume that the surface can be modeled as
correlated Gaussian noise (the justification for this assumption
is given later)

p(uld) = @®

u(x,y) = h(x,y) * n(x,y)

where h(x,y) is a filter impulse response, n(x,y) is a white
Gaussian noise process and * is the two-dimensional convo-
lution operator. A discrete version of u(x,y) can be obtained
by sampling the signal on a rectangular grid. This discrete
signal, u = {u(i, )}, is a correlated multivariate Gaussian. In
this paper, we will use the notation x ~ N(m, P) to denote that
x is a multivariate normal variable with mean m and covari-
ance P [Gelb74]. The probability density function for x can
be written as

p®) = 7P Pexp | 2@~ mTP k= m)|  ©)
where |P| is the determinant of the matrix P (we use {27 P|~1/2

instead of (2r)~"/%|P|~1/? for notational succinctness). We
can thus write the distribution of our discrete prior model as

u ~ NQ©, Py). (10)

The covariance matrix Py can be derived from the corre-
lation function if it is known, or it can be chosen heuristically.
In this paper, we follow the latter route. We chose the inverse
covariance matrix Py to have the same sparse structure as
the matrix A, used in (4). This choice ensures that the mean
estimate produced by the Bayesian approach is the same as

mm e mapuasmaas dswd IO USLLVIHY @ SUUPIC UKELNOOA mea-
sure on the match. OQur choice of P;! also means that the
prior model is a Markov Random Field [Geman84] and that
the power spectrum of the prior is fractal [Szeliski87].

For our sensor model, we use a linear system with additive
Gaussian noise

d=Hu+r, with r~ N@©,R). (11)

This form of sensor modeling is common in the Kalman filter-
ing literature [Gelb74]. The measurement matrix H encodes
the sparse sampling which converts from the dense depth map
u to the sparse set of depth values d. This rectangular matrix
usually contains 1’s where the nodal variables coincide with
the data points, and 0’s elsewhere. If the data points do not
lie on the grid (e.g., if we have “sub-pixel” positioning accu-
racy), the H matrix can be derived from the local interpolation
function and will contain non-integer values. The R matrix
encodes the covariance of the measurement noise process, and
is usually diagonal with r; = o? (uncorrelated sensor noise).

From the sensor model (11) we can derive the distribution
of the data d conditioned on the initial state u as

dju ~ N(Hu, R). 12)

Similarly, we can derive the marginal disuibution of the data
by integrating over all possible initial states to obtain

d ~ N@O,HPH" +R) a3

(this result can also be derived using the formula for sums of
Gaussian random variables).

The posterior estimate u; after the first set of measure-
ments can be derived from (10) and (12) using Bayes’ Rule.
This estimate is a multivariate Gaussian

w ~ N(iy, Py) (14)
with a mean
4, = (P;' +H'R'H)"'H'R"\d
and a covariance
P =@y +HTR™H)™!

(see [Gelb74] or [Maybeck79] for derivations).

The mean estimate Gy, which is also the MAP estimate,
corresponds to the minimum energy solution of the spline ap-
proximation (7) if we make the following correspondences:

P;' =4, H'R'H=A4 and Hd=d.

The estimate obtained with Bayesian modeling is thus the same
as that obtained with spline approximation. The Bayesian
model also provides a description of the uncertainty or vari-
ance in this estimate [Szeliski87]. The Bayesian formulation of
the estimation problem forms the basis of the optimal motion
detection algorithm described in Section 5.

The Bayesian model can be extended to include muldple
measurements of the same surface using

dy = Hklu + Iy, with rg ~ N(O, Rk). (15)

209



The estimation equations can be written in a recursive form
using

k
Ac=P;'+ > HIRT'Hj = A1 +H{R'He  (16)
Jj=

and

k
by = Z HJTRj—ldj = bg—1 +HIR;1dk

=

a7

to accumulate the inverse covariance and cumulative weighted
data vector. The Ay’s and by’s are the same as are used in
spline interpolation of multiple data sets. The optimal estimate
at time & can be obtained by solving

G = Ay 'be.

(18)

4 Matching points to a surface

Once we have obtained a dense depth map from the first set
of sparse depth measurements, we can match the second set of
points to this surface to compute the likelihood of a particular
motion. We start by assuming that the first set of data points
p: is registered with respect to the world coordinate frame. We
then compute an interpolated surface u(x,y) by splitting each
point into its location (x;,y:), which is incorporated into the
H, matrix, and its depth value d;, which becomes part of d;.
The variance assigned to each point is obtained by projecting
the three-dimensional covariance matrix X; onto the z-axis.

The second set of points p; is obtained by taking the
sensor-based set of depth measurements pj and transforming
them through a geometric transformation T which is parame-
terized by ©

p2 = T(p3, O).

These transformed points are then used to derive Hp, R; and
d,, which are now all functions of @. The exact form of @ is
not important here since we are not trying to obtain a closed-
form solution. In this paper, we will use the translation vector
(#x, ty, ;) and three rotation angles (6y, 8y, 6,) as our parameters
(see {Tsai84] and [Faugeras87] for alternate formulations).

We can measure the likelihood of the new points coming
from the interpolated surface i; using (12). Substituting into
(9), we obtain

1 . T .
p(d2|©) = |27 Ry| VY2 exp —5(d - H,4,) R '(d; — qul)] .

19
We can find the maximum likelihood estimate of @ by max-
imizing the above equation, or equivalently, minimizing the
negative log likelihood

E(d;) = — log p(d2|©)
1 1 R _ R
= 5 log|27Ra| + E(dz - qul)TRz 1(dg — Hpiy).

20)

In general, (20) does not have a closed-form solution for the
minimum energy transformation (the vertical translation ¢, is
the exception). This energy equation (the subscript ‘s’ stands
for “simple””) must thus be minimized using non-linear opti-
mization techniques such as gradient descent [Press86].
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Figure 2: Result of simple motion estimation

The set of data points indicated by o’s is matched to the solid

curve interpolated through the x’s. The misalignment is due

to matching the extrapolated curve on the left. The dashed

curve indicates the “updated” fit to both data sets.
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Figure 3: Simple motion estimation with points reversed
The set of data points indicated by X’s is matched to the solid
curve interpolated through the o’s. The alignment differs from
that of Figure 2.

Figure 2 shows a one-dimensional example of this match-
ing technique. The smooth spline interpolated from the first set
of data points (x’s) is shown as a solid curve. The second set
of data points (o’s) is shown in its “most likely” position and
orientation. By examining this example, we can observe sev-
eral problems with our simple method. The matching of new
data points to the “extrapolated” parts of the curve is inaccu-
rate, since little is known about the curve in these areas. This
is symptomatic of the more general problem with this tech-
nique, which is that it does not incorporate any knowledge
about the uncertainty in the original spline approximation. For
example, range data will often have “‘shadowed” areas where
the extrapolated data can be exwremely uncertain. This method
is also not symmetrical with respect to the data acquisition,
since changing the role of the x’s and o’s results in a different
registration (Figure 3). To overcome these problems, we have
to go back to the original Bayesian formulation, and derive an
optimal motion estimator.

S Optimal motion estimation

To derive an optimal estimate of the motion, we must find the
value of @ which makes it most likely that the two sets of
data points p; and p, came from the same smooth surface.



To compute the likelihood of observing the depth values dz
(through the measurement matrix Hy), we note that the dis-
tribution u; ~ N(ily, P1) describes all that is known about the
smooth surface after the first set of data points has been incor-
porated. The second set of data points d; must thus be drawn
from the distribution

d; ~ N(H0;, HoP HY + Ry)

(this same result can be obtained by writing down the joint
probability function p(u, d;, dz) and calculating the conditional
probability p(dz|d;)). The negative log likelihood function in
this case is

Eo(dy) = -;- log |27 (H,P HE + Ry)| 3

+ %(dz — Haiy)T (H,P1HE + Rp) ™' (dy — Hzily)

(the subscript ‘0’ stands for “optimal”). Unfortunately, (21)
is difficult to evaluate, since it involves the covariance matrix
P;, which is not sparse (for a 512 x 512 image, this matrix
has more than 10!° entries!) However, using some algebraic
manipulation (Appendix A), we can obtain a more computa-
tionally tractable formula for the log likelihood

Eo(dy) = Ej(dy) + Ex(dy) (22)
where
1 1 IO DR
Ei(dy) = -2-log[27rR2 | + ilog Py — ilog Py (23)

and
1 R - N
Ex(d) = 5(d — Hi;)"R; (dz — Haiip). 24

The first component of the energy, E1, measures the reduction
in likelihood due to the sensor noise as traded off against the
increase in posterior information. In practice, this component
of the energy varies fairly slowly with the transformation pa-
rameter © and can usually be ignored. The second part of the
energy, E,, measures the distance between the new data points
d, and the surfaces @; and ;. Note how (24) is similar to
(20) except that one side of the quadratic form now involves
the new surface estimate. Points which lie closer to the new
surface estimate 0, than to the old estimate @, are thus penal-
ized less by the optimal energy measure. In this way, areas
where the surface values are originally uncertain (because there
is little data, the area is “shadowed”, or the surface is being
extrapolated) contribute less to the matching criterion.

A related energy measure which could be used instead of
E, as a matching criterion is

Es(dy) = —u TPyl + 5 Z(d — H;ip)"R;1(d; — Hidp) (25)
i=]

which is derived from the joint probability density function
of the data and the surface (Appendix A). This new energy
clearly shows the symmetry of the formula with respect to data
set ordering. This alternate form also has a simple interpreta-
tion as the weighted distance between the data points and the
optimal surface estimate (“spring energy”) plus the smoothness
value of the surface (“strain energy”). The determination of

3 }
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Figure 4: Optimal motion estimation
The solid curve shows the spline fit to the first set of points
(x’s), and the dashed curve shows the spline fitted to all of the
points (x’s and o’s). Note how the updated estimate (dashed
curve) more closely matches the new data points than the pre-
vious estimate (solid curve).

10 l
Figure 5: Energy as a function of shift

The dotted curve shows E; (log determinants), the dashed
curve shows E; (spline and spring energy), and the solid curve
shows E, which is the negative log likelihood.

an optimal motion estimate i3 thus equivalent to minimizing
the energy of the composite surface and spring system.

The implementation of optimal motion estimation is
somewhat more complicated than the simple version that we
presented in the previous section. This is because the up-
dated surface estimate iz must be re-computed each time a
new transformation © is generated. Fortunately, if successive
transformations are close, the new surface estimate can be ob-
tained from the previous estimate using only a few relaxation
iterations. More importantly, since @, actually corresponds to
the minimum energy solution of (25), we can jointly optimize
02 and © using a continuation method similar to [Witkin86].

The optimal motion estimate for the one-dimensional ex-
ample which we introduced previously is shown in Figure 4.
The new registration is “better” than the ones previously ob-
tained since the outlying data points do not “puil” the solution
towards the previous estimate as much. The energy profile
for one of the parameters (the shift #) is shown in Figure 5.
As we mentioned before, the variation of E; with @ (dotted
curve) is small with respect to that of E, (dashed curve), and
can thus be neglected.
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6 Modeling motion uncertainty and
optimal integration

The method which we have just described computes an optimal
motion estimate by finding the transformation which minimizes
an energy {(negative log likelihood) function. This motion es-
timate is itself uncertain, i.., it has a variance that can be
determined from the shape of the *“error surface”. We can jus-
tify estimating the distribution of the transformation @ from
the likelihood of d; using Bayes’ Rule
p(d,|0)p(©@)
p(©@ld2) () o p(d2]|©)

if the prior distribution of the transformation p(©) is uniform.
We can thus estimate a complete distribution for p(®ldz) by
simply normalizing p(d,|©), which is the negative exponential
of our energy function E,(dz). This distribution can encode
multiple hypotheses about © by having multiple “humps”.

In practice, estimating a complete distribution for © may
be impractical. Instead, we can take the optimal motion esti-
mate © and augment it with a covariance matrix Zg. One way
of calculating X' is to first sample the complete distribution
p(©]dy) and to then compute its first and second moments. A
simpler, though potentially less accurate method is to simply
fit a “parabola” (second order polynomial) to the energy sur-
face. In this paper, we adopt this latter method, i.e., we fit the
surface

E®)= %(@ — &M@ -6)+¢

to the error surface E,(dz|©) in the vicinity of the minimum
energy. We use least squares fitting to perform this fit since it
has a simple closed-form solution. The optimal motion esti-
mate is then equated to &, and the inverse covariance £g' is
set to M.

Using the parabolic fit has several advantages over the
moment-based approach. It allows us to estimate the covari-
ance of the motion estimate using only a few sample @ values,
and also provides a © estimate that has better precision than
the original sampling of © values. Estimating the inverse co-
variance can also be more stable since this matrix is often
near-singular (c.g., when certain types of motion are being
confounded or when there is insufficient data for a good esti-
mate). The values for & and Yo that were computed for our
one-dimensional example are

0.0183 0.0280 0.0000 | .

0.0782
Lo =
0.0013 0.0000 0.0002

—-0.1119
—0.0031

The three parameters are shift (#), offset (5,) and rotation 4,,

in radians).

Having a statistical description of the motion estimate al-
lows us to integrate this information with other estimates, such
as those provided by dead reckoning or inertial navigation. If
each measurement has a mean ©; and an associated inverse
covariance matrix E;}, we can obtain an updated estimate
from

0.0906 0.0183 0.0013
6=

6=5H 'Y 5516, and Z5'=)_ Tl
i i

The overall uncertainty in the motion estimate can thus be
reduced significantly, especially if the directions of maximum
uncertainty are orthogonal for different sensing modalities.
The scheme we have just developed for estimating the
motion between two frames can easily be extended to esti-
mate a whole sequence of motions. The formulas given in
(23) and (24) can be converted into a recurve form by simply
substituting k for the subscript 2 and k — 1 for the subscript
1. After each motion & is computed, the new surface esti-
mate i and its inverse covariance P; ! are updated (we could
also use the recursive formulas given in (16) and (17)). The
Bayesian scheme which we have developed can also be used
to incorporate domain-specific prior knowledge, such as carto-
graphic information. The easiest way to do this is to introduce
a “phantom” range observation before the first real set of data.

7 A synthetic range data example

To investigate the performance of our algorithm on sparse
noisy range data, we have tested it on a number of synthetic
range images. For each synthetic scene, a number of nearby
viewpoints are selected, and for each viewpoint, a small rect-
angular array of depth values is generated using perspective
projection. These depth values are then corrupted by adding
white Gaussian noise with a standard deviation proportional to
the range value (this more closely models laser range finder
data than uniform noise). The noisy depth values are then
input to the motion estimation algorithm.

Two of the synthetic scenes that we use are shown in Fig-
ure 6 (“digital terrain™) and Figure 10 (“blocks world™). We
can generate a sparse (9 x 7) depth map from the digital terrain
by modeling a range finder with a pan of £40° and a tilt of
15° to 45° (Figure 7). Applying the spline approximation algo-
rithm to this sparse data, we obtain the surface shown in Figure
8. Note how this surface is quite different from the original
terrain in those areas where there are no sample points. Fortu-
nately, the lack of precision in these “hallucinated” (shadowed
or invisible) areas does not affect the matching very much (for
reasons discussed in Section 5). A second set of sparse depth
points (Figure 9) is then generated by moving the range finder
“forward” by 0.05 units (our digital terrain is 1.0 x 1.0 units
large). Note that this set of points does not closely coincide
with the first set, and that there is incomplete overlap between
the two sets.

The result of our motion estimation algorithm on the sam-
pled terrain range data is

0.0000 0.0042
0.0500 0.0501
.| 0.0000 .| 0.0000
0" =1 00000 | @~ 00002
0.0000 0.0050
0.0000 0.0053

where the true motion is ©*, and the optimal estimate is é.

‘The six parameters are f;, fy, £; (units normalized to model
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size) and 6, §, and 6, (radians). As we can see the method
provides a good estimate of the camera motion, even when lit-
tle information is given. Unfortunately, the computation of the
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Figure 7: Sparse terrain depth data from viewing position 1

information matrix M from the energy values in the vicinity of
the optimal estimate leads to a matrix that is not positive defi-
nite (and hence non-invertible). To overcome this, a quadratic
programming technique could be used, but this has not yet
been implemented.

To demonstrate that our motion estimation technique can
work over a wider range of viewpoints, we can generate the
two point sets shown in Figures 11 and 13. Here, the blocks
world scene is being viewed from two different quadrants.
The interpolated solution from the first set (Figure 12) is quite
inaccurate in the “shadowed” area behind the block, and vet
the motion estimate obtained from this data is still very good

0.8000 0.8005 0.9100
—0.1000 -0.1000 —-0.1100
. | ~01000 | 5 | —01000 | 5 | —09980
%=1 _009s2 | @ =| 00864 | O*=| —0.1002
—0.1000 ~0.0975 —0.0950
~1.6345 ~1.6320 | —1.6345

where the true motion is shown on the left, and the optimal
estimate in the middle, and the “simple” method estimate on
the right. The final surface reconstructed from the combined
data is quite reasonable (Figure 14).
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Figure 8: Interpolated surface from first set of data

Figure 9: Sparse terrain depth data from viewing position 2

We can compare this motion estimate to that obtained us-
ing the “simple” matching criterion of Section 4, As shown
in above, this estimate is quite far from the true motion. This
is mostly due to the mismatch between the ground plane data
seen from the second viewpoint (Figure 13) and the solution
interpolated from the first viewpoint in the shadowed area (Fig-
ure 12).

While these preliminary results are encouraging, more ex-
perimentation is required to fully characterize the performance
of our algorithm. The region of convergence [Lucas84] of the
gradient descent algorithm should be studied. The effects of
varying surface shape, sampling density and amount of noise
should also be examined. The methoed should be tested on
an on-line estimation example (e.g., traversing some terrain)
to see if the depth map improves as more samples are added,
and whether the accuracy of the motion estimate increases as
a result.

8 Discussion

The motion estimation method which we have developed in
this paper can be compared to a number of alternative range-
based motion estimation techniques. One such alternative is di-



Figure 10: “Blocks world” synthetic scene

Figure 11: Sparse block depth data from viewing position 1

Figure 12: Interpolated surface from first sparse block data set
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Figure 13: Sparse block depth data from viewing position 2
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Figure 14: Interpolated surface from both block data sets

rect point or plane matching [Faugeras87]. This method works
well if the sampling density is high enough so that the matched
points are nearby, or if the object consists of planar facets. In
the latter case, the method described in [Faugeras87] may actu-
ally give better results than our method, since a plane fit gives
a more accurate position estimate than a spline fit. Spatial like-
lihood maps [Christ87] could also be used, but these require
the use of spherical coordinates and do not have an explicit
smoothness constraint. Another alternative is occupancy maps
[Elfes87, Stewart87]. This method has the advantage that it
can represent any three-dimensional scene without the need
for a reference plane. However, the accuracy of these repre-
sentations is limited to the grid or cell size, and combining
new measurements with the existing estimate is often diffi-
cult. A similar representation is the elevation map [Hebert88],
which is closely related to the spline representation used in this
paper. Recent work [Kweon88] examines how to convert be-
tween camera-based range images and elevation maps taking
into account the shape of the sensor noise.

Comparing our new method to these previous approaches,



we see that it has several advantages. Our approach can handle
sparse and irregularly spaced data. It does not require any cor-
respondence between sensed data points, and can handle data
with only limited overlap. The dense depth map that is incre-
mentally built up becomes increasingly more accurate as more
data is acquired, since the height is represented as a real value.
The depth map can also be “extrapolated” to shadowed or in-
visible areas without affecting the performance of the motion
estimation algorithm, This is because our framework implic-
itly models the uncertainty of the interpolated surface. Finally,
the uncertainty in the motion estimate can be calculated from
the shape of the energy surface in the vicinity of the optimal
estimate.

The work which we have described could be extended
in several directions. A discontinuity detection process (per-
haps based on [Blake87]) should be incorporated into our al-
gorithm. The regularization parameter A which controls the
amount of smoothing could be derived from the data by max-
imizing the likelihood of the observations, i.e., finding the A
value which minimizes (22) [Szeliski88]. A related possibility
is to vary the amount of smoothing being used while search-
ing for the optimal motion parameters. This coarse-to-fine
strategy, which has been used successfully in stereo matching
[Lucas84, Witkin86], can be used to broaden the “region of
convergence” of our gradient-descent optimization technique.

The surface and sensor models used in our algorithms
could also be extended. For many applications, viewpoint in-
variant interpolators [Blake87] might be a better choice than
our viewpoint dependent splines. Another possibility would
be to use full three-dimensional energy-based surface mod-
els [Terzopoulos87]. Both of these models no longer have
quadratic energy functions, so the resulting probability distri-
butions are no longer Gaussian. The sensor models can be
extended using a full three-dimensional noise covariance ma-
trix, in which case the data (compatibility) constraint becomes
non-linear {Szeliski88].

Finally, our algorithms should be tested on real range
images, such as the ones obtained from the ERIM laser range
finder used on the NavLab at Carnegie Mellon. This would
conclusively determine the viability of our approach, and could
also bring to light unforeseen problems with the method.

9 Conclusions

In this paper, we have presented a new method for estimat-
ing observer motion from sparse range data. This method is
based on a smooth surface assumption used in conjunction
with Bayesian analysis. A dense depth estimate is obtained
from the sparse range data using two-dimensional spline fit-
ting. This dense estimate is then used for matching the new
set of data points. To implement the correct Bayesian likeli-
hood measure, the new updated surface estimate must be used
as part of the match criterion. The optimal motion estimate is
obtained using gradient descent on the match energy as a func-
tion of the motion parameters. The shape of the energy func-
tion in the vicinity of this optimal motion is used to estimate
the covariance matrix of the motion estimate. This statistical
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description of our motion estimate can then be used to inte-
grate this information with other position sensors. Our results
demonstrate that the resulting algorithm is useful for real-time
robot navigation. They also suggest that Bayesian analysis can
in general improve the performance of vision algorithms and
extend their domain of applicability.
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A Derivation of probability
distributions

To re-write the negative log likelihood equation (21) in terms
of sparse quantities such as R;', P7! and P!, we will need
to use two Lemmas. The first is a matrix inversion Lemma
((Maybeck79], p. 280)

(HPHT+R)™! = R"I—RTHHTRTH+P )" 'H'R"! (26)
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where H need not be a square matrix. The second Lemma is
related to matrix determinants

[HPH” +R|™! = R7JP-YH'R"IH+ P77 (27)
([Maybeck79], p 280).
To apply the above two lemmas, we note that
P;! =P ! + HIR; 'H, (28)
and
P;la; = Prlay + HOR; 1ds. 29)

The equation for E; (23) is obtained immediately by applying
(27) and (28) to the first term in (21). The equation for E;
(24) is derived from the second term of (21) by applying (26),
(28) and (29)

Ea(d) = 3(d; — Hob)'[R;
— Ry 'Ha(PT! + HIR; 'Hp) ' HIR; 1(d; — Hai)
= 20~ Hyi)'R7 (@, — Hyih)
— H,P,(HIR; 'd; — HIRS 'Haiy))
= %(dz — Ha)'R7 ' [(dz — Hoh)
— HoPo((P7 iy — PT ) — (P3 — Py Vi)
= 2 ~ Haih) TRy (&3 — Hp)

1 R - . .
- E(dz — Ha00)"R; "Hy (2 — @)
1 . \Tp—1 .
= E(dz - Hafy ) Ry " (d2 — Haily)

which is the desired result.

To derive the second form for £, (25), we start with the
energy (negative log probability) of the joint probability den-
sity

2
1 ro 1 _1
E(u,dy,dy) = -2—UTP0 lu + 5 ;(d; - H;u)TRi (d; — H;u).
To marginalize with respect to u, we simply replace this vari-
able with its minimum energy solution with respect to the other
variables, which is {,.
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