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This paper presents a shape and motion estimation al-
gorithm based on non-linear least squares applied to the
tracks of features through time. While our approach re-
quires iteration, it quickly converges to the desired solu-
tion, even in the absence of a priori knowledge about the
shape or motion. Important features of the algorithm in-
clude its ability to handle partial point tracks and true per-
spective, to use line segment matches and point matches
simultaneously, and its use of an object-centered represen-
tation for faster and more accurate structure and motion
recovery.

This paper addresses the problem of extracting both 3D
structure (shape) and object or camera motion simultaneously
from a given image sequence. Recovering shape and motion
is a difficult and important task, and has wide applicability in
many areas such as robot navigation and manipulation. Ap-
proaches to this problem range from the classical methods
which use only two frames and a few points [3] to methods
which use many frames and points [7, 6]. Tomasi and Kanade
[7] have obtained highly accurate results using a factorization
method to extract object-centered shape and motion under
orthography. More recently, Taylor, Kriegman, and Anan-
dan [6] developed a non-linear least squares fitting algorithm
for 2D shape and motion recovery under perspective using
odometry to obtain initial guesses for the camera motion.

Our approach applies a similar non-linear least squares
technique to recover 3D shape and motion from image streams
(the temporal tracks of image features) without a priori infor-
mation about the shape or motion. Least squares guarantees
a statistically optimal estimate in the vicinity of the true solu-
tion and avoids the potentially unlimited noise amplification
which may occur with arbitrary algebraic manipulation. The
least squares formulation also enables us to deal easily with
perspective or arbitrary camera models, partial and/or uncer-
tain tracks, and even to simultaneously use point and line
correspondences. Our results on both synthetic and real data
indicate that the algorithm normally converges even when no
a priori information about shape or motion is given. For a
detailed review of previous work and a complete description
of our algorithm and results, please see [5].

To formulate the problem, we first write the forward image
formation equations using the usual rigid body transforma-
tion xﬁj = R;x; + t; (we represent rotation matrices with
unit quaternions q;) followed by a perspective projection
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onto the image plane. Rather than using the usual projec-
tion equation u;; = fx};/z];, we use an alternative formula
u;; = sx}; /(1 + nz{;) . This new formulation puts the coor-
dinate system before projection at a distance t, = 1/7 along
the optic axis; s = f/t, corresponds to the scaling between
worldand screen coordinates, and 7 is a perspective distortion
factor. The formulation favors the recovery of structure and
motion in object centered coordinates, which improves the
accuracy of the estimates [7]. We write the complete image
formation equations as u;; = f(x;, t;, q;).

To track point features from frame to frame, we use a rel-
atively simple algorithm based on the monotonicity operator
{2], which computes the number of neighboring pixels whose
intensity is less than that of the central pixel [S]. Figure 1
shows a sample input image and the set of tracks detected in
the sequence.

To recover the structure and motion parameter, we use
the Levenberg-Marquardt algorithm [4], which iteratively
adjusts the unknown shape and motion parameters {x;}
and {t;, q;} 10 minimize the weighted squared distance be-
tween the predicted and observed feature coordinates C =
20 wijlug; — £(xi,t5,q5)* . The Levenberg-Marquardt
algorithm converges more quickly than gradient descent be-
cause it approximates an inverse Hessian method. Its im-
plementation requires only the computation of the forward
equations mapping current estimates to predicted image po-
sitions, and the computation of derivatives with respect to
the unknown parameters. To minimize the overall amount of
computation, we use sparse matrix techniques based on sky-
line storage and LU decomposition [S]. We have found that
solving for shape and motion simultaneously converges more
quickly than alternating between these two sets of parameters.

To begin our algorithm, we initialize 3D point locations by
projecting the 2D image point locations in the middle frame to
a constant depth plane just slightly behind the object coordi-
nate origin, and set the rotation quaternions to unit scalars and
the translations to zero. In practice, the Levenberg-Marquardt
algorithm then converges quickly to the correct solution (Lyp-
ically 5-8 iterations on small synthetic data sets [S]). This
suggests that the region of convergence for the iterative al-
gorithm is quite broad, and that complicated initialization
techniques are not required.

During convergence, we do occasionally observe occur-
rences of depth reversals, especially under weak orthography
(narrow fields of view). These are simple to correct, by re-



@

(b)

©

Figure 1: Results from real image sequence (cube scene, 96 frames): (a) image from sequence (b) traces found (c) top view of

reconstructed 3D points.

flecting the shape about a constant depth plane and checking
if the image plane error is reduced. Once the algorithm has
converged, we can remove or downweight (reduce the w;; of)
measurements with large residuals, thus making the recovery
of parameters more robust. We can also compute variance
and covariance statistics on the parameter estimates.

QOur experimental results on both synthetic and real data
indicate that the algorithm converges quickly and degrades
gracefully with higher levels of noise in the data. For example,
for 96 points randomly distributed over a sphere of diameter
100, an incremental rotation of 1° and 8 frames, the algorithm
converges after 5 iterations to a 2-D image RMS error of 1.25
and a scaled rigid 3-D RMS error of 0.30 [5]. The algorithm
handles pure rotation and pure translation, as well as mixed
motions, equally well. The accuracy of our results improve
as more frames or larger rotation steps ar¢ used.

Figure 1c shows a top-down view of the 3D set of points
recovered from the real image sequence shown in Figure 1a.
The shape of the box is recovered quite well, although a
slight “pinching” implies that the projective structure has been
recovered more accurately than the true Euclidean structure.
This is a common occurrence in shape-from-motion when the
range of viewpoints or the length of the tracks is limited. We
expect improvements in our tracking algorithm to reduce this
problem, as well as to reduce the noise in individual position
measurements.

In [5], we also discuss how our non-linear least squares
algorithm can be used to accurately perform camera calibra-
tion, using either single or multiple images (we simply fix
the x; at their known values). We also show how line corre-
spondences can be used in place of (or in addition to) point
correspondences, simply by considering only image plane er-
rors perpendicular to the line segment orientations.

We have also begun experiments in recovering projective
structure and motion [1]. Qur preliminary results indicate
that this approach converges more quickly than Euclidean
structure recovery [5]. In future work, we plan to investigate
arecursive formulation which models the correlation between
the structure and motion parameters. From the experimental
side, we would like to validate our approach on real data using
known 3-D ground truth, and apply our techniques to more
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complicated scenes.

To summarize, the shape and motion recovery algorithm
developed in this paper has several advantages over exist-
ing techniques. It can handle arbitrary projection equations,
partial and uncertain tracks, and line segment matches in a
unified framework. Additional information, such as known
calibration points or specific structural constraints can easily
be added. It makes optimal and robust use of the data, since
measurements can be individually weighted and outliers can
be rejected. Solving for the unknowns in a batch fashion leads
to optimal estimates, while the computational costs are kept
reasonable by using sparse matrix techniques. Recovering
object-centered shape is more reliable than camera-centered
shape, especially for narrow fields of view. Finally, the iter-
ative recovery of shape and motion without a special boot-
strapping stage makes this a particularly simple and general
technique for shape recovery.
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