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Abstract

This paper presents a new methodology for evaluating the
quality of motion estimation and stereo correspondence algo-
rithms. Motivated by applications such as novel view gener-
ation and motion-compensated compression, we suggest that
the ability to predict new views or frames is a natural metric
for evaluating such algorithms. Our new metric has several
advantages over comparing algorithm outputs to true motions
or depths. First of all, it does not require the knowledge of
ground truth data, which may be difficult or laborious to ob-
tain. Second, it more closely matches the ultimate require-
ments of the application, which are typically tolerant of er-
rors in uniform color regions, but very sensitive to isolated
pixel errors or disocclusion errors. In the paper, we develop
a number of error metrics based on this paradigm, including
forward and inverse prediction errors, residual motion error,
and local motion-compensated prediction error. We show re-
sults on a number of widely used motion and stereo sequences,
many of which do not have associated ground truth data.

1 Introduction

The ability to quantitatively evaluate the performance of com-
peting algorithms is important in many branches of computer
science, e.g., speech recognition, information retrieval, and
machine learning. Quantitative evaluation allows us to mea-
sure progress in our field and motivates us to develop bet-
ter algorithms. It allows us to carefully analyze algorithm
characteristics and to improve overall performance by focus-
ing on sub-components. It allows us to ensure that algorithm
performance is not unduly sensitive to the setting of “magic
parameters”. Furthermore, it enables us to design or tailor al-
gorithms for specific applications, by tuning these algorithms
to problem-dependent cost or fidelity metrics and to sample
data sets.

Unfortunately, computer vision does not have a very strong
tradition of quantitative evaluation. In part, this is unavoid-
able, since computer vision encompasses some very ambitious
goals such as general scene understanding. For more specific
problems, such as edge detection, there is a tendency to eval-

uate the quality of results by visual inspection, which leads to
subjective decision by experimenters or readers (but see, e.g.,
[10] for an attempt to quantify performance).

Two of the most widely studied problems in computer vi-
sion are motion estimation (sometimes called optic flow) and
stereo correspondence. The goal in both problems is to place
pixels in two or more images into correspondence so as to
extract a dense (per-pixel) low-level description of the scene.

The availability of quantitative results for motion estima-
tion improved a few years ago with the publication of Bar-
ron et al.’s comparative paper on optic flow estimation [5].
Since then, most motion estimation papers publish at least
one quantitative result based on the Barron et al. data set. In
stereo correspondence, it is still relatively rare to see quanti-
tative evaluation (but see, e.g., [8]). Most papers that include
comparative results tend to just publish depth maps for two
or more algorithms, and leave it to the reader to gauge their
relative quality.

One reason for this situation is that it is relatively difficult to
get accurate ground truth results, when what is required is the
exact motion vector or depth estimate at each pixel. (Some at-
tempt has been made to provide ground truth at a sparse set of
pixels [7], but as we argue below, this does not reflect the typ-
ical requirements of a lot of modern applications.) In motion
estimation, the most widely used “realistic” motion data set
(with ground truth) is the Yosemite data set, which is actually
computer-generated, based on a texture-mapped digital terrain
model. A less widely used data set [36] is a relatively simple
scene made of textured marble blocks whose motion was la-
beled by hand. In stereo matching, a recent hand-labeled data
set [33] is starting to be used, but the accuracy of the data is
only to the nearest integer disparity level. Some synthetic test
sequences have been developed for stereo matching [19, 17],
but comparative quantitative results have not been reported.

A second problem with using ground truth data for eval-
uating motion or stereo algorithms is that it is unclear why
overall root-mean square (RMS) deviation from ground truth
should be a good predictor of a motion or stereo algorithm’s
utility. Is it, for example, necessary to be equally accurate in
low-texture areas, where motion or stereo is difficult, as it is in
textured areas? Are regions near discontinuities more or less
important in evaluating algorithms?
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In this paper, we propose an alternative to evaluating corre-
spondence algorithms on the basis of their error from ground
truth. Our suggestion is to measure how accurately the mo-
tion or depth estimates (combined with the original image)
can predict the appearance of an image from a novel view or
at a future time, i.e., the appearance of an image that was not
used to compute the motion or depth estimate. We want to
emphasize that this is not the same as motion-compensated
prediction in video coding. Instead of being given two images
and being asked to predict the second from the first (which is
not that hard to do, given a general flow field), we are asked
to predict novel views, not used in the matching.

Our approach has two advantages over measuring ground
truth error. First, it is much easier to acquire datasets for which
algorithms can be evaluated in this manner. For example,
given any collection of three or more images, motion or stereo
can be computed on a subset (two or more) of the images, and
tested on the remaining images. (Another possibility would be
to measure the self-consistency of estimates computed using
different pairs of images [26].)

Second, prediction error is a useful indicator of the ex-
pected quality and utility of motion or stereo algorithm when
used in newer application areas such as virtual reality, image-
based rendering, and video editing or special effects [23, 6].
Examples of such applications include view interpolation [11]
and view morphing [38], frame-rate conversion [35], and de-
interlacing [13].1 Many of these applications require the esti-
mates to be accurate at every pixel (or sometimes even frac-
tions of a pixel [44, 2]), since even small errors show up as
“halos” or scintillating pixels.

The idea of partitioning data into training and testing sub-
sets is common in many areas of computer science such as
speech recognition. It is also a commonly used technique in
statistics, where it is called cross-validation [12, 46], and can
be used to recover unknown internal parameters and to pre-
vent overfitting. Unlike many of these tasks, which involve
classifying the inputs or producing a concise description, we
propose a complete image prediction problem, where a large
amount of data (several images) is used to estimate a large
number of unknowns (the motion estimates), which in turn
are used to predict another large set of data (the test images).

The remainder of this paper is structured as follows. We
begin in Section 2 with a brief review of stereo and motion
representations and estimation. In Section 3 we introduce our
novel family of view prediction metrics. In Sections 4 and
5, we propose a number of novel view generation algorithms
and a set of potential quality (cost) metrics. In Section 6 we
use some simple experiments to demonstrate these metrics,
and then show some results on standard data sets (with and
without ground truth) using our new metrics. We close with a
discussion of our results and some ideas for future work.

1We haven’t included video compression as an application, since this also
requires coding the motion itself, and hence would add additional cost terms
to our quality metric.

2 Motion and stereo representations
Dense stereo or motion estimation can be formulated as fol-
lows. Given two or more images, find a per-pixel correspon-
dence that matches each pixel in a given reference image to cor-
responding pixels in the other images. In general 2-D motion
estimation, motion vectors can be in any direction. (If more
than two images are used, it is common to assume that motion
vectors are constant in time, i.e., that there is no acceleration.)
In stereo matching, an epipolar geometry is usually computed
ahead of time, which restricts the search for matching pixels to
a 1-D epipolar line for each pixel. (Stereo matching naturally
generalizes to multiple frames, without any restrictions on
camera placement or motion, by associating a separate epipo-
lar geometry (camera matrix) with each image.) Descriptions
of commonly used stereo and motion estimation algorithms
can be found in computer vision textbooks [3, 20, 34, 15] and
in a number of survey articles [4, 1, 14, 9, 5, 32].

A single depth or motion map associated with a chosen
reference image is just one possible representation for shape
or motion. Single-valued depth/motion maps do not normally
capture the full information available in a sequence of im-
ages, e.g., regions not visible in the reference image (due to
occlusion or cropping to the image boundary) are not repre-
sented, and cannot be reproduced. For this reason, a number
of alternative representation have be proposed in recent years.

One possibility is to estimate more than one depth value
per pixel. Such a multivalued representation can be thought
of as a volumetric description of the scene (under some pro-
jective resampling of three dimensions). Stereo algorithms
based on this representation have been developed [39, 44, 24],
as well as novel image-based rendering algorithms [40]. An-
other possibility is to represent the scene as a collection of
potentially overlapping layers [47, 48, 2]. Three-dimensional
surface models are another possibility [18, 16]. Finally, mo-
tion or depth maps can be associated with more than just one
image [43], and then used for novel view generation using
image-based rendering [11] or bi-directional motion interpo-
lation [27].

3 Prediction error as a quality metric
As we mentioned in the introduction, a traditional way to eval-
uate the quality of such algorithms is to measure the deviation
in motion or depth estimates from ground truth motion or
depth [5, 36, 33, 8]. Since such data sets are hard to come
by, we propose using the input images themselves as both
“training” and “test” data.

Given three or more images in a motion or stereo data set,
we select a proper subset as input to our estimation algorithm
(the “training” phase). We then predict the appearance of
the remaining images (Section 4), and compute the difference
between the predicted and actual images using some error
metric (Section 5).

In general, we expect to see different kinds of errors for
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Figure 1. Flower garden sequence: (a) original frame 2, (b) estimated depth map, (c) frame 2 extrapolated (forward warped) to
frame 10, (d) frame 10 inverse warped to frame 2. Note the different behavior of the occluded region behind the tree.

interpolating a novel view or frame which lies between the im-
ages chosen as input vs. extrapolating a view or frame beyond
the set of input images. The first kind of error is more indica-
tive of the expected performance of an algorithm in view in-
terpolation, image-based rendering, and motion-compensated
frame rate conversion applications, since it is in general dan-
gerous to extrapolate from a given set of images (e.g., there
may be disoccluded regions where no data exists).2 On the
other hand, extrapolation error will behave more like ground
truth error metrics, since errors in uniform color regions will
eventually contaminate extrapolated views, while they may
not show up in interpolated views.

4 Novel view generation
Given an image and its associated depth or motion map, how
do we generate a novel view or frame in order to compare it
against a real image? In general, there is no single right or
optimal answer, and the answer is highly dependent on the
representation chosen. In fact, this question lies at the heart
of current research into image-based rendering [40].

One possibility is to use texture-mapping hardware (or soft-
ware) to paint the novel image as a collection of teeny-tiny
triangles (two or four per input pixel or quad of pixels). Given
a depth map, a 3D surface can be created (optionally mapping
from projective depths to Euclidean coordinates), and then
rendered from a novel viewpoint, using the original image as
a texture map [30, 42]. Given a 2-D motion map, the reference
image can again be drawn using a texture-mapped computer
graphics rendering algorithm, with the triangles drawn at their
displaced locations. However, in this case, the actual order of
rendering may affect the final results, since there is no third
dimension to correctly resolve visibility issues. This is an
endemic problem with general 2-D motion interpolation (or
extrapolation), and cannot be solved without making layering
information explicit [47]. For better visual quality (less alias-
ing), bilinear or higher order texture interpolation should be
used.

A second possibility is to use a forward-mapping or splat-

2In fact, Seitz [37] proves that for a photoconsistent reconstruction [24],
interpolated views will be rendered correctly, except for regions partially or
fully occluded in the input views.

ting algorithm [49]. Here, each pixel is painted at the location
where it would land in the novel image (in the case of depth
maps, a back-to-front ordering can be enforced [31]). Over-
writing the nearest pixel results in a poor quality rendering (a
lot of aliasing and gaps). Therefore, most splatting algorithms
use a soft kernel that increments several adjacent pixels. This
kind of operation may require a post-processing stage to re-
normalize colors, or may result in order-dependent artifacts
[40].

A third possibility is to use a two-pass algorithm, where a
depth map or flow map is first created for the novel view [40].
Since depth or motion maps tend to vary smoothly (at least,
away from discontinuities), a nearest neighbor (single pixel)
splat can often be used in this stage, followed by single-pixel
gap filling. The new depth or motion map can then be used
to perform an inverse warping algorithm, i.e., to find the in-
terpolated pixel value in the reference image that corresponds
to each (non-empty) novel pixel. Figure 1c shows an image
produced with this two-pass algorithm. Note how the regions
behind the tree show up as gaps with “empty” pixels (no val-
ues).

In general, all of these forward mapping algorithms have to
deal with a number of thorny issues. One of these issues is the
question of discontinuities: when a break occurs in a motion
or depth map, do we interpolate across the break, or leave the
disoccluded area blank? In the latter case, do we fill with some
background color, or flag these pixels as special and adjust
the error metric accordingly? And how does an algorithm
estimate the discontinuities in the first place? Another issue is
the appropriate resampling/interpolation function. We know
that bilinear interpolation of intensities/color is better than
nearest neighbor, but how much better are the results with
higher order interpolators? Do we still want to use higher
order filters near image edges and discontinuities?

An alternative to these forward mapping algorithms is to
directly perform an inverse warping of the actual novel view,
i.e., to resample the new image so that it conforms (as best as
possible) to the reference image. While this breaks the spirit
of our train and test (prediction) paradigm, it can still give us
useful quality metrics, as we will show in the experimental
section of this paper. Figure 1d shows an example of inverse
warping. Note how the pixels in regions that become occluded



in later frames are painted with colors from the occluding
foreground object (the tree).

So far, we have only discussed novel view generation algo-
rithms for the simplest case of a single reference image with
an associated depth or motion map, as this is the case we focus
on in this paper. Other motion or shape estimation represen-
tations and algorithms entail their own associated view gen-
eration algorithms. For example, a volumetric data set can be
visualized using a back-to-front warping and compositing al-
gorithm [25, 44]. Layered representations can be rendered by
first warping (rendering) each layer separately, and then com-
positing the resulting images in back-to-front order (which
enables a better prediction of mixed foreground/background
pixel values [2]). 3-D surface models can be rendered using
texture-mapping algorithms. Multiple sets of colored depth
or motion maps can be rendered using image-based render-
ing techniques that blend rendered images while preserving
visibility relationships.

The quality estimates produced by the error metrics dis-
cussed in the next section depend heavily on the choice (and
quality) of the prediction or resampling algorithms. This can
be mitigated somewhat by fixing the rendering algorithm while
varying the estimation algorithm or its parameters. To a certain
extent, however, viewing the estimation and rendering algo-
rithms as part of a complete system whose end-to-end perfor-
mance is being optimized may be unavoidable and probably
even desirable.

5 Error metrics
Once we have synthesized the appearance of predicted images,
how do we measure their fidelity? The simplest method is to
compute the root mean square (RMS) difference between the
two images, expressed in gray levels. However, depending on
the acquisition hardware, individual images may be differently
exposed. It is therefore prudent to compute a global bias and
gain (additive and linear) correction to apply to one of the two
images before measuring RMS error. (Ideally, we would like
to use perceptually-based error metrics [28], but the state of
research in this field is still not very advanced. This is likely
to be an important area of future research.)

Even once we have compensated for exposure effects, we
still often find that the error is far from being identically dis-
tributed Gaussian noise. In fact, the magnitude of the bright-
ness error is strongly correlated with the amount of local in-
tensity variation. Simoncelli et al. [41] explain that this can
arise because the gradient estimates used in most flow esti-
mation techniques are themselves noisy. Other sources of
error include sub-pixel shifts in the digitization process [30],
mis-estimation of the epipolar geometry which can result in
vertical parallax, and general re-sampling (interpolation) er-
rors due to poor quality (e.g., bilinear) filters or aliasing during
image acquisition.

Given that these problems are endemic, would it be fairer to
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Figure 2. Residual flow computation and value compensa-
tion.

down-weight the squared error at each pixel by some term that
includes the local intensity gradient [41]? If we do this, then
are we still getting good estimates of the perceptual quality of
an estimation / rendering combination?

5.1 Residual motion estimation and compensa-
tion

A better option is to estimate the residual flow [22], which is
the per-pixel estimate of flow required to register the predicted
and actual novel image. We can then compute the RMS resid-
ual flow magnitude as well as the RMS intensity error after
residual motion compensation, in order to get a feel for how
much of the prediction error is due to small mis-registrations.

In our current implementation, since we do not want regions
with little texture variation to contribute to the residual flow
measure, we compute residual flow as follows (see Figure 2).
For each pixel I0 in the image to be corrected, we examine
each of the four quads of pixels surrounding I0. We use the
nearest two neighbors to form a linear approximation to the
interpolated intensity, e.g.,

ĨNE = I0 + (IE − I0)uNE + (IN − I0)vNE . (1)

We find the residual flow vector uNE = (uNE , vNE) that
minimizes

‖ĨNE − I1‖2 + λ‖uNE‖2, (2)

where I1 is the corresponding pixel in the image we are cor-
recting against, and the second term suppresses the compu-
tation of spurious residual flow vectors in region with little
texture or color variation (see [41] for a probabilistic justifi-
cation).3

We clip the four candidate flow vectors to lie within the
quad being examined (which means that many of the vectors
get clipped to (0, 0)), and compute a better interpolated color
value Ĩ using bilinear interpolation. We then pick the residual

3Minimizing the above cost is similar to a one-pixel version of the Lucas-
Kanade flow estimation algorithm [29], and essentially computes normal flow.
For all of our experiments, we set λ = 16 · (#bands), where #bands is
the number of bands (3 for color images, 1 for monochrome).



flow vector with the lowest ‖Ĩ − I1‖ value (or (0, 0) if none
of these errors beats ‖I0 − I1‖), and set the corrected pixel
value to Ĩ . Some examples of estimated residual flows and
corrected images are given in the next Section.

5.2 Outliers and invisible pixels
Two other issues that arise in computing error statistics are
outliers (robust statistical estimates), and invisible pixels (i.e.,
pixels for which there are no corresponding pixels in other
images). Traditional statistical measure such as the standard
deviation of the intensity errors can be heavily affected by out-
liers, which may be caused by occlusions, variation of bright-
ness with viewpoint, and residual motion errors. In order to get
a more robust set of error statistics, we compute a robust mea-
sure of the standard deviation using σ = 1.4826 med|I1 − I0|
[21]. We also compute the percentage of outliers, i.e., the
number of pixels for which |I1 − I0| > 3σ. These statistics
are reported along with the more traditional RMS (root mean
square) error.

In order to compensate for pixels that are invisible in other
images (e.g., pixels whose correct motion has carried them
outside the image frame), we modify our forward and inverse
warping algorithms to flag pixels as invisible when their source
is outside the image (inverse warping), or when no pixels map
to a given pixel after gap filling (forward warping). These
pixels do not participate in the computation of RMS or robust
statistics, but their percentage is reported in the experimental
section.

6 Experiments
Because of space limitations, we only have room to present
a few simple experiments to demonstrate the behavior of our
error metrics. We are currently undertaking a more compre-
hensive set of comparative experiments, focusing in particular
on dense two-frame stereo matching [45].

6.1 Synthetic flow error
To get a sense of the behavior of our error metrics, we
first generated a synthetic motion field by taking an image
from the flower garden video (Figure 1), and using (u, v) =
(k/16, k/8), k = 0 . . . 4 as motion field estimates (the true
motion is (0, 0)). Figure 3a shows a variety of error metrics
as a function of frame number k (increasingly erroneous flow
estimates). The raw RMS error increases linearly as a function
of k, as does the robust estimate of σ. Figure 3c shows the
uncompensated difference image for k = 4, and Figures 3d–e
show the horizontal and vertical components of the residual
flow estimates. Notice how there is little flow in untextured
areas, but that the flow is in general quite noisy. (Remember
that no area-based averaging is used to compute these flows—
they are used solely to reduce the difference error. It may be
fruitful to compute residual flows over larger areas, as is done
in [22]) After compensation, the RMS error (and robust error)
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Figure 3. Synthetic motion errors: (a) no noise, (b) σ = 5.
(c) uncompensated difference image, (d–e) horizontal and
vertical residual flow estimates.

are both very small (imperceptible in the difference image,
which is not shown).

To generate these plots, we used inverse warping, option-
ally followed by residual flow estimation and image compen-
sation. The image being compensated was always the original
and not the warped image. This ensures that the two images
compared have been resampled the same number of times. If
we interchange the sense of which image is compensated, we
find that there is very little improvement in the RMS error
after compensation. On a smoother image (e.g., the SineC
sequence used in [5]), this asymmetry goes away. However,
for realistic images, it is very important to compare apples to
apples, i.e., to try to ensure that resampling errors are similar
between images being compared.

If we add synthetic noise to the images in the sequence,
the overall noise estimates go up. Figure 3b shows the error
plots when Gaussian noise with σ = 5 was added. While
the uncompensated difference does not change much (which
indicates that motion error dominates), the compensated dif-
ference is now much higher, with a standard deviation of about
2.5 (which indicates that residual motion compensation is re-
moving about half of the imaging noise).

6.2 Sequences with ground truth
To demonstrate the behavior of our metrics when ground truth
motion is known, we chose the Yosemite sequence. (Table
1 and Figure 6 list some more image sequences for which
ground truth motion or disparity is known.) Using the ground
truth flows for the middle frame (frame 7), we computed the
raw RMS and robust error metrics, the residual flow, and the
compensated RMS error metric. Figure 4a shows these plots,
along with the percentage of invisible pixels. As the sequence



0

2

4

6

8

10

12

0 2 4 6 8 10 12 14

frame #

p
re

d
ic

ti
o

n
 e

rr
o

r

raw RMS
raw robust
%invisible
res. flow x10
compensated RMS

(a) (b)

Figure 4. Yosemite sequence: (a) plots of prediction errors;
(b) frame 14 inverse warped to frame 7 (note the missing
pixels along the lower left edge).

progresses, the lower left section of the image moves out of
view, so that more an more pixels become invisible during
backward warping (Figure 4b).

The plots show that the error continuously increases as we
move away from the reference frame. By looking at the frames
inverse warped toward the central frame, we have observed
that the ground truth motion does not accurately predict the
appearance of frames far from the center. In fact, because the
motion is looming, the flows have a significant acceleration,
which shows up as a “swinging” motion on the foreground
object. Using a rigid motion model (with known disparities)
should alleviate a lot of this problem.

6.3 Sequences without ground truth
Figure 5a shows the error metrics applied to a disparity field
computed from frames 0, 2, and 4 of the flower garden se-
quence (Figure 1). The stereo algorithm used was a simple
plane sweep algorithm, which is functionally equivalent to a
robustified sum-of-squared-differences (SSD) algorithm. In-
stead of aggregating information over a square window, iter-
ative convolution with a binomial kernel was used before the
min-picking stage.

Since the motion was computed on the first three even
frames, we might expect the prediction error to be lower at
these frames than at other frames. On the other hand, there
is a tendency for prediction error to increase systematically
away from the reference frame, both due to errors in motion
estimation, and other effects such as disocclusions, sampling
artifacts, and photometric effects. Figure 5a shows that both
of these effects are indeed present. The raw RMS and robust
errors increase monotonically away from the reference frame,
while the compensated error is slightly higher at the two in-
terpolated frames (1 and 3) than at the two frames used in the
stereo computation (2 and 4).

To see whether cross-validation could be used to automat-
ically tune one of the stereo algorithm parameters, we re-ran
our algorithm with a varying number of blurring steps after
the initial per-pixel cost computation. Figure 5b shows the
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Figure 5. Flower garden sequence: (a) plot of prediction
errors based on motion estimated from frames 0, 2, and 4;
(b) plots error for various amount of blurring

compensated RMS error for various choices of b (the number
of blurring iterations). Not using any blurring results in signif-
icantly worse estimates, whereas there is not much difference
between the other choices. However, observe that if we were
given just four frames from the sequence (e.g., frames 0, 1, 2,
and 4), we could use the prediction error for frame 1 to tune
b for the three-frame stereo algorithm being run on the other
three frames. Figure 5b shows that this would give us a good
choice of b, since the interpolation error at frame 1 is a good
predictor of the relative prediction errors at other frames. We
are currently applying this kind of analysis to other stereo al-
gorithm parameters, such as window size and the amount of
regularization [45].

7 Discussion and Conclusions
In this paper, we have introduced prediction error as a novel
quality measure for evaluating and designing motion and
stereo correspondence algorithms. Prediction error is much
easier to obtain than ground truth data for multi-image se-
quences. It also more closely matches modern requirements
for motion and stereo algorithms. We have shown how raw
prediction error depends on the interaction between motion
errors and local intensity gradient structure, and suggested a
means (residual flow compensation) for mitigating this factor.

Quantitative evaluation is essential if we are to continue
making progress in the development of motion and stereo al-
gorithms. Not only does it enable us to judge when an advance
is truly worthwhile, but it also enables us to dissect existing
algorithms and approaches to learn which components are re-
sponsible for their good (or bad) behavior, and to determine
how sensitive they are to internal parameters. It also holds out
the hope that algorithms can themselves discover (learn?) in-
ternal parameter values, using generalized cross-validation to
see whether their outputs accurately predict images that have
intentionally been held back.

The work presented in this paper is just a first step towards
what we hope will become an accepted framework for research
in this area. Our models to date do not incorporate any notion
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Figure 6. Images from some commonly used multi-image sequences

of perceptual quality or perceptual similarity. Adding such
models should prove to be very usuful, although the state of
research in this area is still not very advanced. An interesting
question this bring up is: is it better for an algorithm to look
good (i.e., to have no visible artifacts), or to be good, i.e., to
accurately predict the geometric and photometric appearance
of a scene.

Other variants on prediction error should also be explored.
For instance, given a 3D reconstruction of a scene from stereo,
it should be possible to excise foreground elements or in-
sert mid-ground elements. Algorithms that mis-classify pixels
near object boundaries will produce “halos” when such ele-
ment insertion is performed. It should be possible to structure
the acquisition process to add and remove scene elements. It
would also be interesting to compare our new methodology
with the self-consistency metric proposed in [26].

One question that comes up when considering prediction
error as a quality metric is: why not just directly optimize the
3D scene description with respect to how closely it matches
the input images? While this approach is at the heart of many
newer stereo algorithms, it fails to take into account that algo-
rithms will often happily overfit their input data, unless some
data is held back to “keep them honest”.

In current work, we are starting to apply our methodology
to a number of stereo algorithms, in order to evaluate their
quality, refine their behavior, and shed more light on desir-
able properties of quality metrics [45]. It is our hope that
our approach will lead to a marked increase in the quantitative
evaluation of low-level vision algorithms. Rather than provid-
ing yet another mechanism for researchers to bag “bragging
rights” about their latest results, we hope that this will help
increase our general understanding of the nature and behavior
of low-level motion and structure estimation algorithms.

Name Source
#

img. motion
grnd.
truth

Yosemite Quam [5]1,2 15 rigid6 flow/Z
Marble block Otte [36]3 31 rigid7 flow
Lab scene Nakam. [33] 25 rigid Z
SRI Trees Bolles [5]1 21 rigid -
NASA NASA [5]1 37 rigid -
Rubik Szeliski [5]1 21 non-rig. -
CIL town Matth. [30]4 60 rigid -
Park. meter CMU4 25 rigid -
Baseball Kanade [23]5 51 rigid8 -
Flower grdn MPEG-4 150 rigid -
Calendar MPEG-4 300 non-rig. -
Coast guard MPEG-4 300 non-rig. -

1. ftp://csd.uwo.ca/pub/vision/TESTDATA
2. http://www.parc.xerox.com/spl/members/black
3. http://i21www.ira.uka.de/image sequences
4. http://www.ius.cs.cmu.edu/idb
5. http://www.cs.cmu.edu/afs/cs/project/VirtualizedR/www
6. clouds are non-rigid; 7. one block moves non-rigidly; 8. 51 movies.

Table 1. List of some commonly used multi-image se-
quences
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