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Stereo Matching with Nonlinear Diffusion

DANIEL SCHARSTEIN∗

Department of Mathematics and Computer Science, Middlebury College, Middlebury, VT 05753
schar@middlebury.edu

RICHARD SZELISKI
Microsoft Research, One Microsoft Way, Redmond, WA 98052-6399

szeliski@microsoft.com

Received July 23, 1996; Revised May 23, 1997; Accepted June 23, 1997

Abstract. One of the central problems in stereo matching (and other image registration tasks) is the selection of
optimal window sizes for comparing image regions. This paper addresses this problem with some novel algorithms
based on iteratively diffusing support at different disparity hypotheses, and locally controlling the amount of
diffusion based on the current quality of the disparity estimate. It also develops a novel Bayesian estimation
technique, which significantly outperforms techniques based on area-based matching (SSD) and regular diffusion.
We provide experimental results on both synthetic and real stereo image pairs.
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1. Introduction

Stereo correspondenceis the problem of finding match-
ing points in two or more images of the same scene,
usually assuming known camera geometries. Two im-
age pointsp and p′ matchif they result from the pro-
jection of the same pointP in the scene, a property
that is often approximated by asimilarity constraint
requiring, for example,p and p′ to have similar in-
tensity or color. The desired output of a stereo cor-
respondence algorithm is adisparity map, specifying
the relative displacement of matching points between
images.

The stereo correspondence problem is inherently
underconstrained and further complicated by the fact
that the images typically contain noise. Traditional
approaches thus either try to only recover a sub-
set of matches, or make additional assumptions.

∗Supported by funds of the National Science Foundation IRI-
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Feature-basedapproaches, belonging to the former
category, only match points with a certain amount of
local information (such as intensity edges), with the
disadvantage of yielding only sparse disparity maps.
In this paper we will focus onarea-basedapproaches,
which yield a dense disparity map by matching small
image patches as a whole, relying on the assumption
that nearby points usually have similar displacements.

A typical area-based stereo matching algorithm pro-
ceeds the following way: For each location in one im-
age, find the displacement that aligns this location with
the best matching location in the other image. The
quality of a match is measured by comparing windows
centered at the two locations, for example, using the
sum of squared intensity differences (SSD).

A more general way of characterizing area-based
algorithms is the following:

1. For each disparity under consideration, compute a
per-pixel matching cost (e.g., squared intensity dif-
ference).
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2. Aggregate support spatially (e.g., by summing over
a window, or by diffusion).

3. Across all disparities, find the best match based on
the aggregated support.

4. Compute a sub-pixel disparity estimate (optional).

A central problem is to find the optimal size of the
support region (Okutomi and Kanade, 1992; Kanade
and Okutomi, 1994). If the region is too small, a wrong
match might be found due to ambiguities and noise. If
the region is too big, it can no longer be matched as
a whole due to foreshortening and occlusion, with the
result of lost detail and blurring (or dislocating) object
boundaries in the resulting disparity map.

In this paper, we first review the relevant literature
and the basic idea of aggregating support (Sections 2
and 3). We then present some new algorithms that de-
termine the best support region by iteratively diffusing
support in a nonlinear fashion (Section 4). In Section 5
we develop a Bayesian model of stereo matching using
explicit disparity distributions, and derive a novel iter-
ative support aggregation algorithm with significantly
improved performance. We present comparative re-
sults for our algorithms in Section 6, and close with a
discussion of future work.

2. Previous Work

In our discussion of related work we will focus on the
different processing stages of the area-based algorithm
outlined above. A general review of the stereo vision
literature is beyond the scope of this paper. For surveys
of the field see (Barnard and Fischler, 1982; Dhond and
Aggarwal, 1989).

2.1. Matching Cost

At the base of any matching algorithm there is a match-
ing cost that measures the (dis-)similarity of two loca-
tions. Matching costs can be defined locally (at pixel
level), or over a certain area of support. Examples for
local costs are absolute intensity differences (Kanade,
1994), squared intensity differences (Matthies et al.,
1989), binary pixel matches (Marr and Poggio, 1976),
edges (Baker, 1980), filtered images (Marr and Poggio,
1979; Jenkin et al., 1991; Jones and Malik, 1992), and
measures based on gradient direction (Seitz, 1989) or
gradient vectors (Scharstein, 1994). Matching costs
that are defined over a certain area of support include

correlation (Ryan et al., 1980) and nonparametric mea-
sures (Zabih and Woodfill, 1994). These can be viewed
as a combination of the matching cost and aggregation
stages.

2.2. Evidence Aggregation

Aggregating support is necessary for stable match-
ing. A support region can either be two dimen-
sional at a fixed disparity (favoring fronto-parallel
surfaces), or three dimensional inx-y-d space (sup-
porting slanted surfaces). Two-dimensional evidence
aggregation has been done using square windows (tra-
ditional), Gaussian convolution (Scharstein, 1994),
multiple windows anchored at different points (Intille
and Bobick, 1994), and windows with adaptive sizes
(Arnold, 1983; Okutomi and Kanade, 1992; Kanade
and Okutomi, 1994). Three-dimensional support func-
tions that have been proposed include limited disparity
difference (Grimson, 1985), limited disparity gradient
(Pollard et al., 1985), and Prazdny’s coherence princi-
ple (Prazdny, 1985), which can be implemented using
two diffusion processes (Szeliski and Hinton, 1985).

As mentioned above, some techniques, such as cor-
relation and rank statistics, which are defined over a
fixed support region, can combine the cost and aggrega-
tion steps into one. Measures that can be accumulated
in a separate step have the following advantages:

• Efficiency: The measure can be aggregated with a
single convolution (or box-filter) operation (Kanade,
1994),
• Parallelizability: The aggregation step can be im-

plemented by local iterative diffusion, making the
algorithm suited for highly parallel architectures
(Szeliski and Hinton, 1985),
• Adaptability: The measure can be aggregated over

locally different support regions using either ad-
justable size windows (Kanade and Okutomi, 1994)
or a nonuniform diffusion process (this paper).

2.3. Disparity Selection

The easiest way of choosing the best disparity is to se-
lect at each pixel the minimum aggregated cost across
all disparities under consideration (“winner-take-all”).
A problem with this is that uniqueness of matches is
only enforced for one image (thereference image),
while points in the other image might get matched



Stereo Matching with Nonlinear Diffusion 157

to multiple points. Cooperative algorithms employ-
ing symmetric uniqueness constraints are one attempt
to solve this problem (Marr and Poggio, 1976). Us-
ing dynamic programming techniques (Arnold, 1983;
Ohta and Kanade, 1985; Cox, 1994; Intille and Bobick,
1994) is another way of selecting unique and consis-
tent disparities. However, these techniques require the
strict enforcement ofordering constraints(Yuille and
Poggio, 1984).

2.4. Sub-Pixel Disparity Computation

Sub-pixel disparity estimates can be computed by fit-
ting a curve to the matching costs at the discrete dispar-
ity levels (Lucas and Kanade, 1981; Tian and Huhns,
1986; Matthies et al., 1989; Kanade and Okutomi,
1994). This provides an easy way to increase the reso-
lution of a stereo algorithm with little additional com-
putation. However, to work well, the intensities being
matched must vary smoothly.

2.5. Diffusion-Based Techniques

Nonlinear and anisotropic diffusion has been proposed
for a variety of early vision tasks, including edge-
detection (Perona and Malik, 1990; Nordstr¨om, 1990).
Proesmans et al. (1994) detect discontinuities in op-
tical flow by comparing forward and backward flow
estimates and then using a diffusion process to smooth
the discontinuity maps. (Similar ideas of comparing
left-to-right and right-to-left estimates in stereo have
also been used by Fua, 1993, and others.) Proesman
et al. and Fua also use an anisotropic diffusion pro-
cess (mediated by intensity gradients) to smooth out
the flow/disparity estimates. Shah (1993) has also used
nonlinear diffusion in the conjunction with a gradient
descent algorithm for stereo matching. Shah’s work,
however, only models a single disparity at each pixel
as opposed to our multiple simultaneous disparity hy-
potheses.

2.6. Other Techniques

Other stereo techniques include hybrid and iterative
techniques, such as stochastic search (Szeliski and
Hinton, 1985; Marroquin et al., 1987; Barnard, 1989)
and joint matching and surface reconstruction (Hoff
and Ahuja, 1989; Olsen, 1990; Stewart et al., 1996).
Hierarchical (coarse-to-fine) matching is another

important technique that allows for a larger range of dis-
parities to be matched without excessive search (Quam,
1984; Witkin et al., 1987). Yang et al. (1993) use a local
winner-take-all strategy within a multiresolution pyra-
mid to find correspondences.

More than two images are used in multiframe stereo
to increase stability of the algorithm (Bolles et al.,
1987; Matthies et al., 1989; Kang et al., 1995). A spe-
cial case ismultiple baseline stereo, where all images
have identical epipolar lines (Okutomi and Kanade,
1993). In this case, the similarity measures between
the reference image and all other images can be com-
bined by summation into a single measure before the
aggregation step.

Finally, occlusion is an important issue. Many ap-
proaches ignore the effects of occlusion; others try to
minimize them by using a cyclopean disparity repre-
sentation (Barnard, 1989), or try to recover occluded
regions after the matching by cross-checking. Several
authors have developed methods for dealing with oc-
clusion explicitly, using Bayesian models and dynamic
programming (Belhumeur and Mumford, 1992; Cox,
1994; Geiger et al., 1992; Intille and Bobick, 1994).

2.7. Focus of This Paper

From the discussion above, it appears that most area-
based stereo correspondence algorithms are composed
of four tasks: computing a local matching cost; aggre-
gating support spatially; finding the best disparity; and
computing a sub-pixel disparity estimate. This frame-
work allows us to compare different approaches that
have been taken for each task in isolation, without be-
ing distracted by how the other tasks are being solved.

In this paper, we focus mainly on the second task:
Aggregating support. We discuss various kinds of local
diffusion, including a membrane model and a full dis-
tribution model, and contrast it to existing approaches,
such as SSD and adaptive windows.

The other three tasks, although important, are not the
central issue of this work. Unless noted otherwise, we
use squared intensity differences as a matching cost,
and, after the aggregation step, simply select the best
disparity locally at each pixel. In the cases where we
compute sub-pixel disparity estimates, we fit a parabola
to the three cost values centered around the best dis-
parity. It is important to keep in mind that the algo-
rithms presented in this paper are independent of these
choices and apply also to more sophisticated matching
costs and disparity selection strategies.
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3. Aggregating Support in Disparity Space
and the SSD Algorithm

In this section, we introduce the concept of disparity
space, review the sum-of-squared-differences (SSD)
algorithm, and discuss the need for spatially adaptive
support regions.

3.1. Disparity Space

Support for a match is defined over a three-dimensional
disparity space E(x, y, d). Formally, we define the
initial (not yet aggregated) disparity spaceE0 as

E0(x, y, d) = ρ(I L(x + d, y)− I R(x, y)), (1)

whereI L , I R, are the intensity functions of the left and
right image, respectively, andρ measures the similarity
between the two intensities, e.g.,

ρ(l − r ) = (l − r )2.

This formulation usesI R as thereference image, and
assumes rectified images, i.e., purely horizontal dis-
parities. After aggregating support into a final space
E(x, y, d), we can compute a disparity function

d(x, y) = arg min
d∈D

E(x, y, d) (2)

that represents the matches as offsets to the points in
the right image. In practice, we will compute a discrete
disparity field

di, j = d(xi , yj ). (3)

Figure 1 illustrates the selection of the best disparity
in a verticaldisparity columnafter the aggregation of
support at each disparity level.

Figure 1. Stereo matching using the disparity space. After aggre-
gating support at each disparity level, the best match is selected in a
verticaldisparity column.

Figure 2. Slices through disparity spaceE and the equivalent sym-
metric representation̂E for a fixedy. In the symmetric representa-
tion, lines of constant disparity have slope 1, while the lines of sight
(shown dashed) are parallel to the axes. The right line of sight (along
which we want to enforce uniqueness) is vertical in both representa-
tions.

E is a skewed version of the symmetric disparity
spaceÊ (Marr and Poggio, 1976),

Ê(xR, xL , y) = ρ(I R(xR, y)− I L(xL , y)),

which reflects that the matching problem is not biased
towards either eye. In a symmetric setting, however, it
is more difficult to enforce uniqueness for each pixel
and to define the final disparity map (see Section 7 for
a discussion). Figure 2 illustrates the shape of slices
throughE and Ê for a giveny and a limited disparity
rangeD = [dmin, dmax].

3.2. SSD

The standard sum-of-squared-differences algorithm
(SSD) uses square windows to aggregate the evidence
at each disparity. As mentioned before, choosing the
right window size involves a trade-off between a noisy
disparity map and blurring of depth boundaries. We
will illustrate this using two synthetic image pairs.
Both pairs have the same disparity pattern (see Fig. 3):
a central square floating in front of a background with

Figure 3. The disparity pattern for therampandrdspairs: (a) iso-
metric plot; (b) gray-level encoding; (c) gray-level encoding with
occlusion information.
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Figure 4. Synthetic stereo pairsramp(top) andrds (bottom).

constant disparity. Figure 3(c) includes the occlusion
information: the area displayed in white cannot be
matched due to occlusion, and algorithms will assign
arbitrary disparities in this region.

Figure 4 shows the two synthetic image pairs based
on this disparity pattern. The first pair,ramp, is similar
to the image pair depicted in Fig. 5 in the paper by
Kanade and Okutomi (1994) and is based on a linear
intensity ramp in the direction of the baseline. Gaussian
noise has been added to each image independently. The
second image pair,rds, is based on a binary random dot
pattern using two gray levels with equal probability. No
noise has been added to this image pair.

The two image pairs are quite different. Theramp
pair has no local texture variation and constant gra-
dients everywhere, except for the boundaries of the
central square. The two images can only be matched
by comparing absolute intensities, and any algorithm
based on band-pass filtered intensities or gradients will
fail (as will the human visual system). Therdspair, on
the other hand, has strong local texture variation, but is
highly ambiguous since pixels not in correspondence
still have a 50% chance of matching.

Figure 5 shows the performance of the simple SSD
algorithm on these two image pairs using two different
window sizes,w = 3 andw = 7. As can be seen, the
bigger window size yields a disparity map with less
noise, but results in an overall blurring of the features
(the “bumpiness” in the recovered disparities is due to
sub-pixel disparity estimation). The effect on the two
image pairs is quite different: in the ramp pair, the dis-
parities are smoothed across the boundaries, while in
therdspair only theoutlinesof the square are blurred,

Figure 5. Performance of the SSD algorithm using square windows
with sizesw = 3 andw = 7 on therampandrds image pairs.

i.e., the corners are rounded, while the two disparity
levels of foreground and background are clearly recov-
ered.

The latter effect, smoothing of object boundaries, is
more common in real images pairs than the smooth-
ing of disparities. The smoothing of disparities we ob-
served in theramp pair is a direct result of the ramp
intensity pattern and the small local variations in inten-
sity.

3.3. The Need for Adaptive Support Regions

Let us briefly discuss the reasons for boundary blur-
ring by considering the support for two pointsa andb
inside the central square, but close to its boundary (see
Fig. 6). Both points receive partial support for the two
disparitiesdf anddb of foreground and background,
respectively, and little support for other disparities.
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Figure 6. Support for the two disparitiesdf anddb of foreground
and background for two pointsa andb close to the boundary of the
central square.

Point a, lying next to one of the sides of the square,
receives slightly more support from the inside of the
square, and is thus correctly found to be at disparity
df . Pointb, lying in the corner, however, receives more
support fordb, since almost 3/4 of its support region
cover the background, and thus is erroneously found to
be at disparitydb. The overall effect is that corners get
rounded since points close to corners are “co-opted”
into the wrong disparity. Straight object boundaries
are not affected. Note also that no smoothing of the
disparity values takes place.

Since the blurring of outlines is caused by support
regions that span object boundaries, a possible solu-
tion to the problem is to use nonuniform and adaptive
support regions. Kanade and Okutomi (1994) have
proposedadaptive windows, square windows that ex-
tend by different amounts in each of four directions.
The optimal window size is found by a greedy algo-
rithm (gradient descent) based on an estimate of dis-
parity uncertainty in the current window. In this paper,
we propose a different approach: aggregating support
with a nonuniform diffusion process.

4. Aggregating Support by Diffusion

Instead of using a fixed window, support can also be
aggregated with a weighted support function such as
a Gaussian. A convolution with a Gaussian can be
implemented using local iterative diffusion (Szeliski
and Hinton, 1985) defined by the equation

∂E

∂t
= ∇2E. (4)

In a discrete system, this yields the update rule

E(i, j, d)← (1− 4λ)E(i, j, d)

+ λ
∑

(k,l )∈N4

E(i + k, j + l , d), (5)

whereN4 = {(−1, 0), (1, 0), (0,−1), (0, 1)} is the lo-
cal neighborhood containing the four direct neighbors.

Equation (5) defines an iterative algorithm for dif-
fusing support, given the initial conditionE = E0.
The value ofλ controls the speed of the diffusion. At
each iteration a new value ofE is computed at every
point in disparity space from the current values of the
point’s immediate neighbors. A value ofλ < 0.25 is
needed to ensure convergence; we useλ = 0.15 for the
experiments reported in this paper.

Aggregation using a finite number of simple diffu-
sion steps yields fairly similar results to using square
windows. Advantages include the rotational symme-
try of the support kernel and the fact that points fur-
ther away have gradually less influence. However, the
problem of co-opting corners still exists.

4.1. Membrane Model

A problem with simple diffusion is that the size of
the support region increases with the number of it-
erations. In other words, while the diffusion would
eventually converge to a uniform support covering the
whole image, we are interested in an intermediate time
step in which the diffusion has only progressed to a cer-
tain amount. We can change this behavior by adding a
term to the diffusion equation that measures the amount
each current value has diverged from its original value,
yielding themembrane equation(Terzopoulos, 1986;
Szeliski and Hinton, 1985).

∂E

∂t
= ∇2E + β(E0− E). (6)

In the discrete implementation we use

E(i, j, d)← [1− λ(β + 4)]E(i, j, d)+ λβE0(i, j, d)

+ λ
∑

(k,l )∈N4

E(i + k, j + l , d). (7)

Unless noted otherwise, we use the parametersλ =
0.15 andβ = 0.5 in the experimental results shown in
this paper. Theβ-term ensures that the diffusion con-
verges to a stable solution not too far from the original
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Figure 7. Sections through the disparity space of therds image pair during diffusion using the membrane model. The initial disparity space
E0 is displayed at the top. The diffused disparity spaceE is shown after one iteration (middle) and after 10 iterations (bottom). Dark regions
indicate a match.

values. A closed-form solution for the support func-
tion can easily be derived using Fourier analysis (see
Appendix A).

Figure 7 shows the results of applying our diffusion
process to therds image pair. The amount of support at
each discrete disparity level is shown before diffusion
(E0), after one iteration, and after 10 iterations. Dark
regions indicate strong support for a match. Figure 8
shows the results for accumulating support using the

Figure 8. Performance of the membrane model on theramp and
rds image pairs (gray level images and isometric plots).

membrane model for theramp and rds pairs. The
number of diffusion iterations isn = 10 (the results
are almost identical atn = 5).

Using the membrane model alleviates the contour
blurring problem to some extent, since theβ-term
“ties” the center of each support region to its origi-
nal value. For very noisy images, however,β needs
to be chosen quite small to enable enough smoothing
for stable matching, making the process more similar
to regular diffusion.

4.2. Diffusion with Local Stopping Criteria

A different strategy for preventing both corner co-
opting and diffusion to uniformity is to locally stop
the diffusion process depending on the distribution of
values in each disparity column. To do this, we asso-
ciate a measure ofcertainty C(i, j ) with each location.
Intuitively, this measure should reflect how “clear” a
minimum there is among the valuesE(i, j, d) for all d.
Given such a measureC, we can aggregate support us-
ing nonuniform diffusion:

For each(i, j ), compute certaintiesC andC′ before
and after a single iteration of diffusion. IfC > C′,
do not diffuse, i.e., restore the old valuesE(i, j, d)

for all d.

The idea is that diffusion takes place only at loca-
tions of ambiguous matches. Also, certainties never
decrease, thus guarantying convergence.

We have experimented with several different cer-
tainty measures. In this paper, we will discuss two
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Figure 9. Disparities of theramp image pair based on diffusion with local stopping compared to regular diffusion and the membrane model.

measures, thewinner margin, and theentropy. The
winner marginCm is the normalized difference between
the minimumEmin and the second minimumEmin 2 in
a disparity column:

Cm(i, j ) = Emin 2− Emin∑
d E(i, j, d)

. (8)

The second measureCe is the negative entropy of
the probability distribution in the disparity column. We
convert to probabilities by taking the inverse exponent
and normalizing:

Ce(i, j ) = −
∑

d

p(d) log p(d), (9)

with

p(d) = e−E(i, j,d)∑
d′ e
−E(i, j,d′) .

We will develop the idea of converting to probabili-
ties further in the next section.

Figure 9 shows disparity maps for theramppair com-
puted with four kinds of diffusion and increasing itera-
tions. The first row shows regular diffusion, the second
and third row show diffusion with local stopping based
on Cm andCe. The fourth row shows diffusion using
the membrane model for comparison. It is clearly vis-
ible that regular diffusion keeps blurring the features
as the number of iteration increases, while the other
three diffusion processes converge quickly to a stable

solution. Which of the three performs best is hard to
tell by looking at the disparity maps; a quantitative
analysis based on errors in the computed disparities
will be presented in Section 6. It can be seen, however,
that none of the diffusion methods does a very good
job at recovering the occlusion boundaries. We now
turn to a different diffusion algorithm, derived from a
Bayesian model of stereo matching, which will result
in markedly improved performance.

5. A Bayesian Model of Stereo Matching

Many stereo matching algorithms can be interpreted
as approximations to an optimal Bayesian estima-
tor. In this section, we develop a Bayesian model
for stereo matching that includes both a measurement
model corresponding to the matching criterion and
a prior Markov Random Field model corresponding
to the aggregation function. Our model uses robust
(non-Gaussian) statistics to handle gross errors and dis-
continuities in the surface. We also develop a novel ap-
proximation algorithm that results in a nonlinear diffu-
sion process, and show how this produces better results
than standard diffusion.

As before, stereo reconstruction is specified as the
estimation of a discrete disparity fielddi, j = d(xi , yj )

given two (or more) input imagesI L(x, y)andI R(x, y).
Using a Bayesian framework, we first specify a model
of image formation, and then derive estimation algo-
rithms from this model.
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5.1. The Prior Model

The Bayesian model of stereo image formation con-
sists of two parts. The first part, aprior modelfor the
disparity surface, uses a traditional Markov Random
Field (MRF) to encode preferences for smooth surfaces
(Geman and Geman, 1984). This model is specified as
a Gibbs distributionpP, the exponential of a potential
function EP:

pP(d) = 1

ZP
exp(−EP(d)), (10)

whered is the vector of all disparitiesdi, j andZP is a
normalizing factor. The potential function itself is the
sum of clique potentials

EP(d) =
∑
c∈C

Ec(d),

which only involve neighboring sites in the field. In
this paper, we study only first-order fields, where

EP(d) =
∑
i, j

ρP(di+1, j − di, j )+ ρP(di, j+1− di, j )

(11)

(see Terzopoulos, 1986; Szeliski, 1989, for generaliza-
tions to higher order fields).

Whenρ(x) is a quadratic,ρ(x) = x2, the field is a
Gauss-MRF, and corresponds in a probabilistic sense
to a first order regularized (membrane) surface model
(Terzopoulos, 1986; Szeliski, 1989). Whenρ(x) is a
unit impulse,ρ(x) = 1 − δ(x), it corresponds to a
MRF that favors fronto-parallel surfaces (Geman and
Geman, 1984; Marroquin et al., 1987). In between
these two extremes are functions derived fromrobust
statistics(Huber, 1981), which behave much like sur-
face models with discontinuities (Blake and Zisserman,
1987; Geiger and Girosi, 1991; Black and Rangarajan,
1996). A wide variety of robust penalty functions are
possible. In this paper, we use a contaminated Gaussian
model,

ρP(x) = −log
(
(1− εP)e−x2/2σ 2

P + εP
)
. (12)

Figure 10 shows the shape of this function forεP =
0.01 andσP = 1.

Black and Rangarajan (1996) discuss the relation-
ship between robust penalty methods and nonlinear

Figure 10. Shape of the robust penalty functionρP for εP = 0.01
andσP = 1.

diffusion techniques such as those of Perona and Malik
(1990).

5.2. The Measurement Model

The second part of our Bayesian model is thedataor
measurement modelthat accounts for differences in in-
tensities between left and right images. This model
assumes independent, identically distributed measure-
ment errors,

pM(I L , I R | d) =
∏
i, j

pM(I L(xi + di, j , yj )

− I R(xi , yj )). (13)

As mentioned before, traditional stereo matching
methods use either a squared intensity error metric
(Gaussian noise),ρM(x)= log pM(x)= x2, or an ex-
act binary matching criterion (e.g., for random-dot
stereograms or binary features such as edges or the
sign of the Laplacian),ρM(x)= 1 − δ(x). Here we
again use a contaminated Gaussian model,

ρM(x) = −log
(
(1− εM)e−x2/2σ 2

M + εM
)
, (14)

to model Gaussian noise and allow possible outliers
due to occlusions or nonmodeled photometric effects
such as specularities.

The posterior distribution,p(d | I L , I R) can be de-
rived from the prior and measurement models using
Bayes’ rule,

p(d | I L , I R) ∝ pP(d)pM(I L , I R | d). (15)
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As is often the case, it is more convenient to study the
negative log probability distribution

E(d) = −log p(d | I L , I R)

=
∑
i, j

ρP(di+1, j − di, j )+ ρP(di, j+1− di, j )

+
∑
i, j

ρM(I L(xi + di, j , yj )− I R(xi , yj )).

(16)

While p(d | I L , I R) specifies a complete distribution,
usually only a single optimal estimate ofd(x, y) is de-
sired (but see Szeliski, 1989, why modeling of uncer-
tainties may be useful). The most commonly studied
estimate is the peak of the distribution, orMaximum A
Posteriori(MAP) estimate, which is equivalent to min-
imizing the energy given in (16). Alternative estimates
include quantities such as the mean of the distribution
(Marroquin et al., 1987).

A variety of techniques have been developed for min-
imizing equations like (16). Two of the most popu-
lar are the Gibbs Sampler (Geman and Geman, 1984;
Marroquin et al., 1987) and mean field theory (Geiger
and Girosi, 1991; Zerubia and Chepalla, 1993). The
Gibbs Sampler randomly chooses values for eachdi, j

site according to the local distribution determined by
the current guesses for a site’s neighbors (Geman and
Geman, 1984; Szeliski and Hinton, 1985; Barnard,
1989). This process will, in theory, converge to a statis-
tically optimal sample, given enough time. Mean field
theory updates an estimate of themeanvalue ofdi, j

at each site using a deterministic update rule derived
from the original probability distribution (Geman and
Geman, 1984). It is not guaranteed to find an optimal
estimate, but in practice, it often finds a good solution,
similar to one available through continuation methods
(Blake and Zisserman, 1987).

5.3. Explicit Local Distribution Model

The Gibbs Sampler and its variants can produce good
solutions, but at the cost of long computation times.
Mean field techniques, on the other hand, are not very
good at modeling ambiguous estimates, such as mul-
tiple potential matches at each pixel. Instead of using
either of these two traditional approaches, we will de-
velop a novel estimation algorithm based on modeling
the probability distribution ofdi, j at each site. To do
this, we associate a scalar value between 0 and 1 with

each possible discrete value ofd at each pixel(i, j ),
and require that∑

d

p(i, j, d) = 1. (17)

Our representation is therefore the same as that
used by diffusion-based algorithms, i.e., we explicitly
model all possible disparities at each pixel, rather than
modeling a single estimated disparity as in traditional
Gibbs Sampler or mean-field approaches (Barnard,
1989).

To initialize our algorithm, we calculate the prob-
ability distribution for each pixel(i, j ) based on the
intensity errors between matching pixels, i.e.,

p0(i, j, d) ∝ exp(−E0(i, j, d)), (18)

where

E0(i, j, d) = ρM(I L(xi +d, yj )− I R(xi , yj )) (19)

is the matching cost of pixel(i, j ) at disparityd. This
is equivalent to a Maximum Likelihood estimate of
the probabilityp0 given the initial per-pixel matching
cost E0 (without taking into account the spatial prior
pP(d)).

To derive the update formula, we start with a basic
observation about Markov Random Fields: if the joint
probability distribution of all interacting neighbors is
known, the local probability distribution of a site is
completely determined. To compute this distribution,
we take the part of the potential energy (16) which
involves(i, j ), i.e.,

Ẽ(di, j | {di+k, j+l })
= E0(i, j, d)+

∑
(k,l )∈N4

ρP(di+k, j+l − di, j ), (20)

and turn this into a probability distribution

p̃(di, j | {di+k, j+l })
= p0(i, j, d)

∏
(k,l )∈N4

exp(−ρP(di+k, j+l − di, j )).

(21)

We then integrate out all of the neighboring disparities
according to their joint probability distribution

p(di, j )∝
∑
{di+k, j+l }

p̃(di, j | {di+k, j+l })p({di+k, j+l }).

(22)
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In practice, however, it is impossible to estimate the
full joint probability distribution of the neighbors, with-
out resorting to a statistical technique such as the Gibbs
Sampler. (This is not true, however, of 1D processes
such as Markov Chains.) Instead, we assume (sub-
optimally) that the neighboring disparity columns have
independent distributions

p({di+k, j+l }) =
∏

(k,l )∈N4

p(di+k, j+l ) (23)

where thep(di+k, j+l ) are the current probability den-
sity estimates for each neighboring site(i + k, j + l ).
This assumption resembles thepseudo-likelihoodas-
sumption used in the Iterated Conditional Mode (ICM)
algorithm (Besag, 1986; Zhang et al., 1994). However,
ICM further assumes that the individual probability dis-
tributions are represented by themode, i.e., the MAP
estimate, whereas we model a complete distribution
p(di+k, j+l ). The assumption that neighboring proba-
bility distributions are independent is called afactored
probability approximation, and is often used to gen-
erate mean-field approximation to physical systems.
Appendix B shows how our update formula can be de-
rived as the rule that minimizes the Kullback-Leibler
divergence between the true posterior Gibbs distribu-
tion and its factored (mean-field) approximation.

The complete update formula is

p(di, j ) ∝ p0(i, j, d)
∏

(k,l )∈N4

[ ∑
di+k, j+l

exp(−ρP(di+k, j+l

− di, j ))p(di+k, j+l )

]

(24)

or

E(i, j, d)← E0(i, j, d)

+
∑

(k,l )∈N4

log

[
−
∑

d′
exp(−ρP(d′ − d)

− E(i + k, j + l , d′))

]
,

(25)

where we have replaceddi+k, j+l with d′.
For notational and computational convenience, we

will introduce a few more additional quantities. The

smoothed probability distribution

pS(i, j, d) =
∑

d′
e−ρP(d′−d) p(i, j, d′)

=
∑

d′
wP(d′ − d)p(i, j, d′) (26)

is simply the current probability distributionp(i, j, d)

after it has been convolvedvertically (in dispar-
ity) with the smoothing kernelwP(d)∝ e−ρP(d), with∑

d wP(d)= 1. It has a correspondingsmoothed
energy

ES(i, j, d) = −log pS(i, j, d). (27)

Finally, the update rule can be written as a pair of
equations

E(i, j, d)← E0(i, j, d)

+
∑

(k,l )∈N4

ES(i + k, j + l , d), (28)

p(i, j, d)← e−E(i, j,d)∑
d′ e
−E(i, j,d′) . (29)

In practice, it useful to introduce an extra parameter
µ that controls the speed of the diffusion (similar to
λ in Eqs. (5) and (7), and to include the current esti-
mated energy in the update rule. This yields a modified
version of (28)

E(i, j, d)

← E0(i, j, d)

+µ

[
ES(i, j, d)+

∑
(k,l )∈N4

ES(i + k, j + l , d)

]
.

(30)

A value of µ < 1 slows the diffusion process and
facilitates stable convergence (we useµ = 0.5).

If we interpret the above Eqs. (26), (27), (30), and
(29) as a four-step algorithm for iteratively computing
the best stereo matches, we see that they are a spe-
cial instance of a nonlinear diffusion process. This is
illustrated in Fig. 11.

The smoothing step (Eqs. (26) and (27)) blurs the
current disparity probabilities vertically along a col-
umn, thereby enabling different nearby disparities to
support each other (depending on the size ofσP). It also
adds a small amount to each probability (εP), which
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Figure 11. Illustration of the four-step diffusion algorithm. At each
iteration, the probabilities are smoothed vertically in each disparity
column, converted to energies, diffused horizontally, and converted
back to probabilities.

in effect limits the largest possible value thatES can
take and thus limits the effect of disparity discontinu-
ities. This step also qualitatively resembles the local
winner-take-all (WTA) step of Yang et al. (1993), in
that neighboring disparities are used during the sup-
port aggregation stage.

The update step (Eqs. (30) and (29)) is identical to a
regular diffusion step withβ-terms (membrane model).
However, the probability renormalization step ensures
that the energies represent meaningful log probabili-
ties (in practice, it forces the smallestE to be slightly
above 0). The robust form of theE0 function also en-
sures that bad matches have only limited effects, thus
allowing for occlusions or other nonmodeled errors to
occur.

For the above algorithm to work well, the various
parameters{σP, εP, σM , εM}must be set to appropriate
values.σM andεM are based on the expected noise in
the image sensor, i.e.,σM should be proportional to the
regular image noise, whileεM should be the probability
of gross errors or occlusions (say 1–10%). The choice
of σP depends on the class of disparity surfaces which
may be expected, i.e., a smallσP favors fronto-parallel
surfaces. For the experiments presented in this paper,
we setσP = 0.1 andεP = 0.01.

Figure 12 shows the results of our probabilistic ag-
gregation technique applied to theramp and rds im-
ages. We use a differentσM for the two image pairs:
σM = 2 for ramp; σM = 20 for rds, to compensate for
the different signal strengths of the two pairs. The

Figure 12. Performance of the probabilistic model on therampand
rds image pairs (gray level images and isometric plots).

other parameters are the same for both image pairs:
εM = 0.1, σP = 0.1, εP = 0.01. The number of diffu-
sion iterations isn = 10.

6. Experimental Results

In this section, we numerically evaluate the perfor-
mance of the different algorithms on synthetic images.
We also show results for real image data.

For our experiments we use five synthetic image
pairs, based on combining three different intensity pat-
ternsramp, rds, andreal, and two different disparity
patterns,squareandbars. We have already introduced
thesquaredisparity pattern (Fig. 3), and the combina-
tionsramp/squareandrds/square(Fig. 4).

The new disparity patternbarsconsists of two rect-
angular regions with two different disparities (see

Figure 13. Thebarsdisparity pattern, containing an ordering con-
straint violation: (a) isometric plot; (b) gray-level encoding; (c) gray-
level encoding with occlusion information.
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Figure 14. The three additional synthetic image pairs.

Fig. 13). The narrow region in the bottom half of the
image is displaced by more than twice its width, thus
violating the commonly assumed monotonicity (order-
ing) constraint. Together with the big disparity range,
this provides an extra challenge to stereo algorithms,
but reflects common situations in real images. The new
intensity pattern,real, is part of a real image depicting
ground covered with grass.

Figure 14 shows the three new image pairs syn-
thesized using the texture/disparity combinationsreal/
square, rds/bars, and real/bars. We do not use the
combinationramp/barssince the narrow region cannot
be matched unambiguously, resulting in meaningless
disparity error statistics. All images have size 64× 64;
the tested disparity ranges are 0–8 (square) and 0–27
(bars).

We compared the following algorithms: SSD, dif-
fusion using the membrane model, diffusion with lo-
cal stopping, and diffusion using the probabilistic
model. For each algorithm, we varied the parame-
ters: window size (SSD),β, λ (membrane), certainty

measure (local stopping),σM , σP, εM , εP, µ (proba-
bilistic), and the number of iterations (all diffusion
algorithms). For each parameter setting, we ran the
algorithm on a test set of 40 images (the 5 image
pairs with 8 different levels of additive Gaussian noise:
σ = 0, 0.25, 0.5, 1, 2, 4, 8, 16). We tried more than
70 different parameter settings, resulting in about 3000
experiments. In each experiment, we compared the
computed disparities with the true disparities (ignoring
the occluded regions), and collected three different er-
ror statistics: mean absolute disparity error, root-mean-
square (RMS) disparity error, and the “percentage of
bad points”, i.e., the percentage of points whose abso-
lute disparity error is greater than 1/2.

Recall that our goal in devising the different algo-
rithms was to recover the occlusion boundaries cor-
rectly. The percentage of bad points gives a good
indication whether the boundaries are recovered cor-
rectly, since this is where the errors are big. For sim-
ilar reasons, we prefer the RMS error over the mean
absolute error since it penalizes outliers more.

First we analyzed the error statistics for each method
separately to gain understanding of the effect of the dif-
ferent parameters. Then we chose the best parameters
for each method, and compared the different methods
with each other. We present in detail the results of the
second, comparative stage, after briefly discussing the
general trends we noticed.

SSD, which we include for comparison, has only
one parameter: the size of the support region. The
same holds for simple diffusion, where the size of the
support region is controlled by the number of iterations.
Not surprisingly, the optimal size of the support region
depends on the noise level. In general, higher noise
levels (or, more precisely, lower signal-to-noise ratios)
require bigger window sizes. The best window size
can also depend on the image.

The membrane model behaves similarly to regular
diffusion with a fixed number of iterations. For small
noise levels, a value ofβ between 1/3 and 1 usually
yields smaller errors than regular diffusion, but not al-
ways. Also, as mentioned before, for high noise lev-
els,β needs to be chosen quite small to enable enough
smoothing for stable matching.

In analyzing regular diffusion with local stopping
criteria, we found that the certainty measure is critical.
In our experiments, the winner marginCm almost al-
ways outperformed the measure based on entropyCe.
A problem with our definition of local stopping is that
an initial wrong but “certain” match can survive. There
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is clearly a potential for both better certainty measures
and different stopping criteria.

The probabilistic model, which performed by far the
best, also has the most parameters. We found, however,
that many parameters have only small effects and can be
set to default values, includingεM = 0.1, εP = 0.01,
andµ = 0.5. As expected, a smallσP worked best
for our test images composed from fronto-parallel sur-
faces. For real images, we found thatσP needs to be
chosen slightly higher. The most important parameter
is σM , which should reflect the strength of the image
signal. We used three different values for the three dif-
ferent textures of our test images. Finally, the number
of iterations is less critical, since the method seems to
converge relatively fast to a stable solution. Higher
numbers of iterations are necessary for images con-
taining regions of uniform intensity, such as the real
images discussed below.

For direct comparison of the methods, we plot the
disparity error versus the noise level on all five image
pairs: Fig. 15 shows the RMS errors, and the percent-
age of bad points. We compare SSD with a window
size of 5, the membrane model withβ = 0.5, diffusion
with local stopping based on winner marginCm, and the
probabilistic model withεP = 0.01, σP = 0.1, εM =
0.1, andσM = 2, 8, 20, for ramp, real, andrds tex-
tures respectively. The number of iterations is 10 for
all methods.

The probabilistic model clearly beats the three other
methods. For small noise levels, the occlusion bound-
aries are recovered almost perfectly (the percentage of
bad points is 0% in three of five images). Note that the
algorithm recovers the “correct” disparity pattern, even
though the notion of true disparities is not well defined
for ambiguous images such as random dot stereograms.

We also tested our algorithms on real images. We
include results of the probabilistic method on images
from the SRI’s tree sequence and CMU’s town se-
quence (see Fig. 16). We used multiple baseline stereo
based on five images to initialize the disparity space
with the sum of four (appropriately scaled) similar-
ity measures (Okutomi and Kanade, 1993). Figure 17
shows the disparity maps computed by the probabilis-
tic algorithm after 50 iterations, using the following
parameters:σP = 0.4, εP = 0.01, σM = 5, εM = 0.1.
Note that we use a biggerσP than before to account for
slanted surfaces.

The running times are 220 s for thetree pair (im-
age size: 256× 233, disparity levels: 16), and 119 s
for the town pair (image size: 240× 256, disparity

levels: 9). Thus, on average about 4.5µs are spent
per pixel per disparity per iteration. These times were
obtained on a DEC Alpha workstation using an ex-
perimental (sequential) implementation that was not
optimized for speed.

7. Discussion

As we have shown, linear and nonlinear diffusion al-
gorithms are an attractive alternative to the adaptive
windows introduced by Kanade and Okutomi (1994).
In its simplest form, the membrane algorithm simply
requires the iterative summation of neighboring match-
ing costs, with an additional term thrown in to prevent
the support region from growing indefinitely. The in-
creased weighting of the central pixel relative to the
periphery is sufficient to counteract many of the arti-
facts introduced by the squared summing window used
in SSD. When combined with a local stopping criterion,
the resulting nonlinear diffusion process has an adap-
tive support behavior similar to the variable window
size algorithm. The inclusion of additional nonlinear-
ities in the Bayesian diffusion algorithm improves the
performance even more. The Bayesian formulation has
the property that the prior term dominates in regions
without much texture, and the data term dominates in
regions with great texture variations. Thus, the non-
linear diffusion algorithm derived from the Bayesian
formulation also has an implicit adaptive windowing
effect. In addition, the accurate recovery of the occlu-
sion boundaries is aided by using robust penalty func-
tions both for the smoothness prior and for computing
the matching cost.

In addition to their simplicity and computational effi-
ciency, our nonlinear diffusion algorithms can also han-
dle stereograms with more ambiguity than the adaptive
window SSD algorithm. Kanade and Okutomi’s algo-
rithm is based on locally adjusting the sub-pixel dispar-
ity estimate simultaneously with growing the window
size. This presupposes that the algorithm is somehow
initialized in the vicinity of the true disparity. This
is achieved in their synthetic image sequences by us-
ing small disparities, and in their real sequences by
using a multiframe version of the basic SSD algo-
rithm (Okutomi and Kanade, 1993). Image pairs with
rapidly varying textures and many potential matches
such as the random-dot stereograms used in our ex-
periments could not be handled by their current algo-
rithm. Of course, their basic method could potentially
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Figure 15. Comparative performance of four stereo algorithms on five test image pairs. The plots show two different performance measures as
a function of the standard deviation of image noise. The left column shows the RMS error of the computed disparities; the right column shows
the percentage of points whose absolute disparity error is greater than 1/2. Disparities of occluded points are not included.
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Figure 16. Tree and town image sets.

Figure 17. Disparities for tree and town images computed by the probabilistic algorithm.

be extended to include a standard multiple disparity
search component, but the performance of such a hy-
brid method is as yet unknown.

In its present form, our algorithm computes monocu-
lar rather than binocular disparity maps, i.e., the dispar-
ity map is associated with the right image. A binocular
representation would remove this restriction, enabling
the representation of occluded regions in both left and
right images. Extending our diffusion algorithms to a
binocular representation is relatively straightforward:
the concept of neighbors at the same disparity is mod-
ified to define equal disparities in thecyclopeanrepre-
sentation of depth, i.e., the depth seen by a camera
halfway between the original two (Barnard, 1989).
Such a representation would also allow us to deal with
occlusions more gracefully, allowing occluded pixels
to float to the same disparity as other pixels in the

background. However, it is unclear how to extend the
Bayesian algorithm, since it requires the renormaliza-
tion of disparities along each column in disparity space.

An alternative strategy for handling occlusions is
to explicitly prevent pixels that have already been
assigned to a more frontal surface from participat-
ing in the matching cost evaluation in regions that
are “shadowed” by the frontal surface (Szeliski and
Golland, 1998). The prior smoothness model would
then cause these regions to be filled in at the back-
ground depth (and not at the frontal depth, where the
matching cost would not have been suppressed). In
addition to these extensions, we also plan to study bet-
ter local stopping criteria based on improved certainty
measures. We would also like to investigate multires-
olution versions of our diffusion algorithms to help
fill in regions which have few features to match. One
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possibility would be to use the multiresolution frame-
work of Yang et al. (1993).

8. Conclusions

In this paper, we have demonstrated that diffusion-
based aggregation of support is a useful alternative
to both traditional area-based correlation and to more
recent adaptive window size-based techniques. Our al-
gorithms are simple to implement and computationally
efficient, and result in better quality estimates, espe-
cially near discontinuities in the disparity surface. The
addition of local termination conditions to the basic
diffusion process results in a behavior similar to that
of adaptively sized windows. Furthermore, our novel
nonlinear diffusion algorithm derived from a Bayesian
model of stereo matching results in markedly improved
performance. We believe that further study of the basic
support and aggregation methods in stereo matching is
central to developing algorithms with improved perfor-
mance over a wide range of imagery.

Appendix A: Support Function
for the Membrane Model

The support function (i.e.,impulse responseor kernel)
for the membrane diffusion model is a function, which
can be convolved with the original input dataE0 to yield
the final value ofE. This function can be computed by
settingE0 to a unit impulseE(i, j ) = δ(i )δ( j ), and
setting the r.h.s. of (6) to 0.

For the discrete case (7), this involves solving the
coupled set of equations

β (δ(i )δ( j )− f (i, j ))

+
∑

(k,l )∈N4

( f (i + k, j + l )− f (i, j )) = 0 (A1)

(the support function is the same for all disparity levels
d). Rewriting these in the Fourier domain, we obtain

β(1− F(ωx, ωy))

+
∑

(k,l )∈N4

(
F(ωx, ωy)e

j (kωx+lωy) − F(ωx, ωy)
) = 0

or

F(ωx, ωy) = β

β + 4− 2 cosωx − 2 cosωy
. (A2)

Figure A.1. Shape of the membrane support function forβ = 0.5.

While the inverse transform ofF(ωx, ωy) has no closed
form solution, it is simple enough to compute numeri-
cally (see Fig. A.1 for a plot).

Appendix B: Mean Field Analysis of a Potts Glass

Assume we have a posterior probability distribution
overdi which is a Gibbs distribution, so that

−log P(d | I L , I R) =
∑

i j

Ei j (di , dj )

+
∑

i

Ei (di )+ log Z (B1)

where eachdi can only take on a discrete set of values
1 . . . K andZ is the partition function. This kind of a
model is called a Potts glass (Peterson and S¨oderberg,
1989).

Relating this back to our Bayesian stereo matching
model (Section 5), the indexi refers to a pixel(i, j ),
thedi are the disparities;Ei j andEi encode the prior
and measurement models,EP(d) andEM(I L , I R | d).

Now, represent eachdi by its distributed represen-
tation si , which is a K -dimensional bit vector, with
only one bit being on at a time (thekth bit being on is
equivalent todi = k).

We can then rewrite the log likelihood of the Gibbs
distribution as

−log P(d | I L , I R) =
∑

i j

sT
i A i j sj +

∑
i

bT
i si , (B2)

where theklth entry inA i j is Ei j (di = k, dj = l ) and
thekth entry inbi is Ei j (di = k).
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Computing either the ground state of the Gibbs dis-
tribution (i.e., the MAP estimate) or even the marginal
distribution of a given variabledi is generally com-
putationally intractable, although one can try to use
approximate algorithms, e.g., the Gibbs Sampler.

As an alternative, we can choose to approximate the
original probability functionP(d | I L , I R) with a sim-
pler factoreddistribution

Q(d) =
∏

i

Qi (di ),

that is, we assume that the joint probability distribution
is a product of independent per-site probabilities. This
approximation is often called themean-field approxi-
mation(Parisi, 1988).

In order to find thebestmean-field approximation,
we minimize the Kullback-Leibler divergence between
the new and original distributions (Cover and Thomas,
1991)

DKL =
∑

d

Q(d) log
Q(d)

P(d)
, (B3)

where the summation is taken over all states. This can
be written as

DKL = H(Q)−
∑

d

Q(d) log P(d). (B4)

whereH(Q) is the entropy of the distributionQ. As
Q(d) is factored,H(Q) is given by

H(Q) =
〈
log

∏
i

Qi (di )

〉

=
∑

i

〈log Qi (di )〉

=
∑

i

∑
k

qik logqik, (B5)

whereqik = Qi (di = k) is the (marginal) probability
that di is equal tok, or equivalently, theexpectedor
meanvalue of thekth bit of si .

The second term in (B4) can be expanded using (B2)
as

−
∑

d

Q(d) log P(d) =
〈∑

i j

sT
i A i j sj +

∑
i

bT
i si

〉

=
∑

i j

qT
i A i j q j +

∑
i

bT
i qi ,

(B6)

whereqi = 〈si 〉 is the mean (expected) value ofsi (i.e.,
qik is thekth component ofqi ).

We wish to minimize the KL divergence subject to
the condition that the marginal probabilities sum up to
1, i.e.,

∑
k qik = 1. We can do this using Lagrange

multipliers, i.e., minimizing

C = DKL +
∑

i

λi

(∑
k

qik − 1

)
. (B7)

Taking the partial derivative w.r.t.qik , we get

∂C
∂qik
= 1+ logqik +

∑
j

ak
i j q j + bik + λi = 0, (B8)

whereak
i j is thekth column ofA i j . We can thus com-

pute the required formula forqik in terms of the other
q j as

qik = exp

(
−
(∑

j

ak
i j q j + bik

))
exp(−(λi + 1)).

Imposing the requirement that
∑

k qik = 1, we can
solve for exp(λi + 1) = ∑k exp(−(

∑
j ak

i j q j + bik))

to get the final result

qik =
exp

(−(∑ j ak
i j q j + bik

))
∑

l exp
(−(∑ j al

i j q j + bil
)) (B9)

This formula is the direct analogue of the probabil-
ity updating rule (Eq. (24)) derived in Section 5, after
equating the terms

ak
i j = exp(−ρP(di+k, j+l − di, j ))

q j = p(di+k, j+l )

bik = −log p0(i, j, d)

Thus, we know that applying this rule to any isolated
site will result in a reduction of the Kullback-Leibler
divergence, and hence has a guaranteed convergence to
at least a local minimum. Applying updates in parallal
may not converge, but should work fine if small enough
steps are used.
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