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Abstract
A traditional approach to extracting geometric information
from a large scene is to compute multiple 3-D depth maps
from stereo pairs or direct range finders, and then to merge
the 3-D data. However, the resulting merged depth maps
may be subject to merging errors if the relative poses be
tween depth maps are not known exactly. In addition, the
3-D data may also have to be resampled before merging,
which adds additional complexity and potential sources of
errors.

This paper provides a means of directly extracting 3-D
data covering a very widefield ofview, thus by-passing the
needfor numerous depth map merging. In our work, cylin
drical images are first composited from sequences of im
ages taken while the camera is rotated360 0 about a vertical
axis. By taking such image panoramas at different camera
locations, we can recover 3-D data ofthe scene using a set
ofsimple techniques: feature tracking, an 8-point structure
from motion algorithm, and multibaseline stereo. We also
investigate the effect ofmedianfiltering on the recovered 3
D point distributions, and show the results ofour approach
applied to both synthetic and real scenes.

1 Introduction

A traditional approach to extracting geometric information
from a large scene is to compute multiple (possibly numer
ous) 3-D depth maps from stereo pairs, and then to merge
the 3-D data [3, 5, 16, 19]. This is not only computation
ally intensive, but the resulting merged depth maps may be
subject to merging errors, especially if the relative poses be
tween depth maps are not known exactly. The 3-D data may
also have to be resampled before merging, which adds ad
ditional complexity and potential sources of errors.

This paper provides a means of directly extracting 3
D data covering a 3600 horizontal field of view, thus by
passing the need for numerous depth map merging. Cylin
drical images are first composed from sequences of images
taken while the camera is rotated 3600 about a vertical axis.
By taking such image panoramas at different camera lo
cations, we can recover 3-D data of the scene using a set
of simple techniques: feature tracking, an 8-point structure
from motion algorithm, and multibaseline stereo.

There are several advantages to this approach. First,
the cylindrical image mosaics can be built quite accurately,
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since the camera motion is very restricted. Second, the rel
ative pose of the various camera locations can be deter
mined with much greater accuracy than with regular struc
ture from motion applied to images with narrower fields of
view. Third, there is no need to build or purchase a spe
cialized stereo camera whose calibration may be sensitive
to drift over time-any conventional video camera on a tri
pod will suffice. Our approach can be used to construct
models of building interiors, both for virtual reality appli
cations (games, home sales, architectural remodeling), and
for robotics applications (navigation).

2 Relevant work

There is a significant body of work on range image recov
ery using stereo (the most recent comprehensive survey is
given in [2]). Most work on stereo uses images with limited
fields of view. One of the earliest work to use panoramic
images is the omnidirectional stereo system ofIshigura [6],
which uses two panoramic views. One of the disadvan
tages of this method is the slow data accumulation, which
takes about 10 mins.

Murray [14] generalizes Ishiguraet al.'s approach by us
ing all the vertical slits of the image (except in the paper,
he uses a single image raster). This would be equivalent to
structure from known motion or motion stereo. The anal
ysis involved in this work is similar to Bolles et al.'s [1]
spatio-temporal epipolar analysis.

Another related work is that of plenoptic modeling [13].
The idea is to compose rotated camera views into panora
mas, and based on two cylindrical panoramas, project dis
parity values between these locations to a given viewing
position. However, there is no explicit 3-D reconstruction.

Our approach is similar to that of [13] in that we com
pose rotated camera views to panoramas as well. However,
we are going a step further in reconstructing 3-D feature
points and modeling the scene based upon the recovered
points. We use multiple panoramas for more accurate 3
D reconstruction.



Image (N-1) Image NImage 2Image 1

• Convert the (1', fi:)-corrected 2-D flat image sequence
to cylindrical coordinates, with the focal length f as its
cross-sectional radius [24]. An example of a sequence
of corrected images (of an office) is shown in Figure 3.

Figure 3: Image sequence of an office.

adjust the position of camera relative to an X-Y precision
stage (mounted on the tripod) such that the moti.on parallax
effect disappears when the camera is rotated back and forth
about the vertical axis [20].

Prior to image capture of the scene, we calibrate the
camera to compute its intrinsic camera parameters (specif
ically its focal length f, aspect ratio 1', and radial distortion
coefficient fi:). The camera is calibrated by taking multi
ple snapshots of a planar dot pattern grid with known depth
separation between successive snapshots. We use an it
erative least-squares algorithm (Levenberg-Marquardt) to
estimate camera intrinsic and extrinsic paramellers (except
for fi:) [23]. fi: is determined using 1-D search (Brent's
parabolic interpolation in 1-D [17]) with the kast-squares
algorithm as the black box.

The steps involved in extracting a panoramilc scene are
as follow:

• At each camera location, capture sequence: while pan
ning camera around 3600

•

• Using the intrinsic camera parameters, correct the im
age sequence for 1', the aspect ratio, and f., the radial
distortion coefficient.

• Compose the images to yield the desired panorama
[21]. The relative displacement of one frame to the
next is coarsely determined by using phase: correlation
[11]. Subsequently, the image translation is refined
using local image registration by directly comparing
the overlapped regions between the two images [21].

• Correct for slight errors in the resulting length (which
in theory equals 27l'f) by propagating residual dis
placement error equally across all images and recom
posing. The error in length is usually within a percent
of the expected length.

An example of a panoramic image created from the office
scene in Figure 3 is shown in Figure 4.

In order to extract 3-D data from a given set of panoramic
images, we have to first know the relative positions of the
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Figure 1: Generating scene model from multiple 3600

panoramic views.

4 Extraction of panoramic iimages

Figure 2: Compositing mUltiple rotated camera views into a
panorama. The' x' mark indicate the locations ofthe cam
era optical and rotation center.

3 Basic idea
Our ultimate goal is to generate a photorealistic model to be
used in a variety of scenarios. We are interested :in provid
ing a simple means of generating such models. In our case,
we use a workstation with framegrabber (real-time image
digitizer) and a commercially available 8-mm camcorder.

Our approach is straightforward: at each camera loca
tion in the scene, capture sequences of images while rotat
ing the camera about the vertical axis passing through the
camera optical center. Compose each set of images to pro
duce panoramas at each location. Use stereo to extract 3-D
data from the scene. Finally, model the scene using these
3-D data and render it with the texture provided by the in
put 2-D images. This approach is summarized in Figure 1.

Using multiple camera locations in stereo analysis sig
nificantly reduces the number of ambiguous matches and
also has the effect of reducing errors by averaging [15, 9].
This is especially important for images with very wide
fields of view, because depth recovery is unreliablle near the
epipoles, where the looming effect takes place, resulting in
very poor depth cues.

A panoramic image is created by composing a series of ro
tated camera image images, as shown in Figure 2. In order
to create this panoramic image, we first have to ensure that
the camera is rotating about an axis passing through its op
tical center, i.e., we must eliminate motion parallax when
panning the camera around. To achieve this, we manually
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Figure 4: Panorama of office scene after composing.

camera corresponding to the panoramic images. For a cal
ibrated camera, this is equivalent to determining the epipo
lar geometry between a reference panoramic image and ev
ery other panoramic image.

Once we have extracted point feature tracks, we can then
proceed to recover 3-D positions corresponding to these
feature tracks. 3-D data recovery is based on the simple no
tion of stereo.

6.1 Reconstruction Method 1: Un-
constrained feature tracking and 8-point
data merging

In this approach, we use the tracked feature points across all
panoramic images and apply the 8-point algorithm. From
the extracted essential matrix and camera relative poses, we
can then estimate directly the 3-D positions.

The sets of 2-D image data are used to determine (pair
wise) the essential matrix. The recovery of the essential
matrix turns out to be reasonably stable, and this is due to
the large (360°) field of view. We have found that extract
ing the essential matrix using the 8-pointalgorithm is stable

The idea of extracting 3-D data simultaneously from more
than the theoretically sufficient number of two camera
views is based on two simple tenets: statistical robustness
from redundancy and disambiguation of matches due to
overconstraints [15, 9]. The notion of using multiple cam
era views is even more critical when using panoramic im
ages taken at the same vertical height, which results in the
epipoles falling within the images. If only two panoramic
images are used, points that are close to the epipoles will
not be reliable. It is also important to note that this problem
will persist if all the multiple panoramic images are taken
at camera positions that are colinear. In the experiments de
scribed in Section 8, the camera positions are deliberately
arranged such that all the positions are not colinear. In ad
dition, all the images are taken at the same vertical height
to maximize view overlap between panoramic images.

We use three related approaches to reconstruct 3-D from
multiple panoramic images. 3-D data recovery is done ei
ther by (1) using just the 8-pointalgorithm on the tracks and
directly recovering the 3-D points, or (2) proceeding with
an iterative least-squares method to refine both camera pose
and 3-D feature location, or (3) going a step further to im
pose epipolar constraints in performing a full multiframe
stereo reconstruction. The first approach is termed as un
constrained tracking and 3-D data merging while the sec
ond approach is iterative structure from motion. The third
approach is named constrained depth recovery using epipo
lar geometry.

5.1 Using the 8-point algorithm
We use the 8-point algorithm [12, 4] to extract what is
called the essential matrix, which yields both the relative
camera placement and epipolar geometry. This is done
pairwise, namely between a reference panoramic image and
another panoramic image. There are, however, four possi
ble solutions [4]. The solution that yields the most positive
projections (i.e., projections away from the camera optical
centers) is chosen.

After recovering the essential matrix, we can then deter
mine both the orientation and translation (up to a scale). In
our work, the scale is determined from the measured dis
tance between camera positions, though this is not critical
[8].

If the number of input points is small and not well dis
tributed in the image, the output of the 8-point algorithm
is sensitive to noise. On the other hand, it turns out that
normalizing the 3-D point location vector on the cylindrical
image reduces sensitivity of the 8-point algorithm to noise.
This is similar in spirit to Hartley's application of isotropic
scaling [4] prior to using the 8-point algorithm. The 3-D
cylindrical points are normalized according to the relation

u = (J sin 0, y,f cos 0) --+ u = u/lul (1)

5.2 Tracking features for 8-point algorithm
The 8-point algorithm assumes that feature point corre
spondences are available. Feature tracking is difficult since
purely local tracking fails because the displacement can
be large (of the order of about 100 pixels, in the direction
of camera motion). The approach that we have adopted
comprises spline-based tracking [22, 25], which attempts
to globally minimize the image intensity differences. This
yields estimates of optic flow, which in turn are used by a
local tracker [18] to refine the amount of feature displace
ment.

The approach we have developed for object tracking can
be thought of as a "fine-to-finer" tracking approach. In ad
dition to feature displacements, the measure ofreliability of
tracks is available (according to match errors and local tex
turedness, the latter indicated by the minimum eigenvalue
of the local Hessian [18,25]). As we shall see later in Sec
tion 8.1, this is used to cull possibly bad tracks and improve
3-D estimates.
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(4)

(2)

when the points are well distributed over the field of view.
In this approach, we use the same set of data to recover

Euclidean shape. In theory, the recovered positionsare only
true up to a scale. Since the distance between camera loca
tions are known and measured, we are able to get the true
scale of the recovered shape. Note, however, that the cam
era distances need not be known [8].

Let llik be the ith point of image k, Yik be the unit vec
tor from the optical center to the panoramic image point in
3-D space, Aik be the corresponding line passing through
both the optical center and panoramic image point in space,
and tk be the camera translation associated with the kth
panoramic image (note that t 1 = 0). The equation of line
Aik is then rik = AikYik +tk. Thus, for each point i (that is
constrained to lie on line Ai 1), we minimize the enor func
tion

N

Ei = L II r i1 - rikl1
2

k=2

where N is the number of panoramic images. By taking the
partial derivatives of Ei with respect to Aij, ) = 1, ..., N,
equating them to zero, and solving, we get

from which the reconstructed 3-D point is calc:ulated using
the relation Pi1,opt = Ai1,optYi1. Note that a more opti
mal manner of estimating the 3-D point is to minimize the
expression

N

Ei =L Ilpi1,opt - rikl1
2

k=l

However, due to the practical consideration of texture
mapping the recovered 3-D mesh of the estimalted point dis
tribution, the projection of the estimated 3-D point has to
coincide with the 2-D image location in the reference im
age. This can be justified by saying that since the feature
tracks originate from the reference image, it is reasonable
to assume that there is no uncertainty in feature location in
the reference image.

6.2 Reconstruction Method 2: I1terative
panoramic structure from motion

The 8-point algorithm recovers the camera motion param
eters directly from the panoramic tracks, from which the
corresponding 3-D points can be computed. However, the
camera motion parameters may not be optimally recovered,
even though experiments by Hartley using narrow view im
ages indicate that the motion parameters are close to op
timal [4]. Using the output of the 8-point algorithm and
the recovered 3-D data, we can apply an iterative least
squares minimization to refine both camera motion and 3
D positions simultaneously. This is similar to work done
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by Szeliski and Kang on structure from motion using mul
tiple narrow camera views [23]. It turns out that applying
iterative least-squares minimization does not significantly
improve the accuracy of the recovered 3-D stereo data. In
terested readers are referred to [8] for details.

6.3 Reconstruction Method 3: Constrained
depth recovery usiing epipolar geometry

As a result of the first reconstruction method's reliance on
tracking, it suffers from the aperture problem and hence
limited number of reliable points. The approach of using
the epipolar geometry to limit the search is desi:gned to re
duce the severity of this problem. Given the epipolar ge
ometry, for each image point in the reference panoramic
image, a constrained search is performed along the line of
sight through the image point. Subsequently, the position
along this line which results in minimum match error at
projected image coordinates corresponding to other view
points is chosen. Using this approach results in a denser
depth map, due to the epipolar constraint. The principle
is the same as that described in [9].

While this approach mitigates the aperture problem, it
incurs a much higher computational demand. ][n addition,
the recovered epipolar geometry is still dependent on the
output quality of the 8-point algorithm (which in tum de
pends on the quality of tracking). The user has to also spec
ify minimum and maximum depths as well as th;~ resolution
of depth search.

7 Stereo data segmentation and
modeling

Once the 3-D stereo data has been extracted, we can then
model them with a 3-D mesh and texture-map each face
with the associated part of the 2-D image panorama. We
have done work to reduce the complexity of the resulting 3
D mesh by planar patch fitting and boundary simplification.
The displayed models shown in this paper are rendered us
ing our modeling system. A more detailed description of
model extraction from range data is given in [7].

8 Experimental n~sults
In this section, we present the results of applying our ap
proach to recover 3-D data fwm multiple panoramic im
ages. We have used both synthetic and real images to test
our approach. As mentioned e:arlier, in the experiments de
scribed in this section, the camera positions are deliberately
arranged so that all of the positions are not colinear. In ad
dition, all the images are taken at the same vertical height
to maximize the overlap between panoramic images.

8.1 Synthetic scene
The synthetic scene is a room comprising objects such as ta
bles, tori, cylinders, and vases. One half of the room is tex-



(a) View 1 (b) View 2

(a) Correct dist. (b) Unconstrained 8-pt (c) Constrained search Figure 7: Two views of modeled synthetic room.
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Figure 6: Comparison of 3-D points recovered of synthetic
room. The results for the iterative method are very similar
to those for unconstrained 8-point.

tured with a mandrill image while the other is textured with
a regular Brodatz pattern. The synthetic objects and images
are created using Rayshade, which is a program for creat
ing ray-traced color images [10]. The omnidirectional syn
thetic depth map of the entire room is created by merging
the depth maps associated with the multiple views taken in
side the room.

The composite panoramic view of the synthetic room
from its center is shown in Figure 5. The results of apply
ing both reconstruction methods (i.e., unconstrained search
with 8-pointand constrained search using epipolar geome
try) can be seen in Figure 6. We get many more points us
ing constrained search (about 3 times more), but the quality
of the 3-D reconstruction appears more degraded (compare
Figure 6(b) with (c)). The dimensions of the synthetic
room are lO(length) x 8(width) x 6(height), and the reso
lution for the depth search in the multibaseline stereo algo
rithm is om. What is interesting is that the quality of the
recovered 3-D data looks better after applying a 3-D me
dian filter. However, the median filter also has the effect
of rounding off corners.

The mesh in Figure 6(f) and the two views in Figure 7 are
generated by our rendering system described in [7]. As can
be seen from these figures, the 3-D recovered points and the
subsequent model based on these points basically preserved
the shape of the synthetic room.

In addition, we performed a series of experiments to ex
amine the effect ofboth "bad" track removal and median fil
tering on the quality of recovered depth information of the
synthetic room. The feature tracks are sorted in increasing
order according to the error in matching. We continually

0.25 L-~_-'--~_---'---_~-'--_~...,-.L ~--cc'

100.0 80.0 60.0 40.0 20.0 0.0
Percent of total points

Figure 8: 3-D RMS error vs. number of points. The origi
nal number of points (corresponding to 100%) is 3057. The
dimensions ofthe synthetic room are lO(length) x 8(width)
x 6(height).

remove tracks that have the worst amount of match error,
recovering the 3-D point distribution at each instant.

From the graph in Figure 8, we see an interesting result:
as more tracks are taken out, retaining the better ones, the
quality of3-D point recovery improves-up to a point. The
improvement in the accuracy is not surprising, since the
worse tracks, which are more likely to result in worse 3-D
estimates, are removed. However, as more and more tracks
are removed, the gap between the amount of accuracy de
manded of the tracks, given an increasingly smaller number
ofavailable tracks, and the track accuracy available, grows.
This results in generally worse estimates of the epipolar ge
ometry, and hence 3-D data. Reducing the number ofpoints
degrades the quality of both epipolar geometry (in the form
of the essential matrix) and 3-D data. This is evidenced by
the fluctuation of the curves at the lower end of the graph.
Another interesting result that can be observed is that the
3-D point distribution that has been median filtered have
lower errors, especially for higher numbers of recovered 3
D points.

As indicated by the graph in Figure 8, the accuracy of
the point distribution derived from just the 8-point algo
rithm is almost equivalent that that of using an iterative
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Figure 5: Panorama of synthetic room after composing.

least-squares (Levenberg-Marquardt) minimization, which
is statistically optimal near the true solution. This result is
in agreement with Hartley's application of the 8-point al
gorithm to narrow-angle images [4]. It is also worth noting
that the accuracy of the iterative algorithm is best at smaller
numbers of input points, suggesting that it is more stable
given a smaller number of input data.

(a) Unconstrained 8-point (b) Median filtered version of (a)

10 Summary

(d) Median filtered version of (c)

(e) 3-D mesh of (b)

(c) Con:Strruined

Figure 10: Extracted 3-D points and mesh of laboratory
scene. The results for the iterative method are very similar
to those for unconstrained 8-point.

We have described an approach to extracting omnidirec
tional3-D data from multiple panoramas taken at arbitrary
different locations. This reduces the need for numerous
multiple merging ofdisparate depth maps corresponding to
different camera views of the same scene. Results indicate
that the application of 3-D m(xlian filtering improves both
the accuracy and appearance of stereo-computed 3-D point
distribution.

Currently, the omnidirect.ional data, while obtained
through a 3600 view, has limited vertical view. We plan
to extend this work by incorporating tilted (Le., rotated
about a horizontal axis) camera views to increase the verti
cal panoramic extent. This would enable scene reconstruc
tion ofa building floor involving multiple rooms with good
vertical view. In addition, we are also currently characteriz
ing the effects of misestimated intrinsic camera parameters
(focal length, aspect ratio, and the radial distortion factor)

9 Discussion

8.2 A real scene
The setup that we used to record our image sequences con
sists of a DEC Alpha workstation with a 1300 framegrab
ber, and a camcorder mounted on an X-Yposition stage af
fixed on a tripod stand.

We recorded image sequences of a lab scene. A
panoramic image of the lab scene is shown in Figure 9. A
total ofeight panoramas at eight different locations (about 3
inches apart, ordered roughly in a zig-zag fashion) in the lab
are extracted. The longest dimensions of the L-shaped lab
is about 15 feet by 22.5 feet. The 3-D point distribution is
shown in Figure 10 while Figure 11 shows two views of the
recovered model ofthe lab. As can be seen, the shape of the
lab has been reasonably well recovered; the "noise" points
at the bottom of Figure 1O(a) corresponds to the positions
outside the laboratory, since there are parts of the transpar
ent laboratory window that are not covered. Thils reveals
one of the weaknesses of any correlation-based algorithm
(namely all stereo algorithms): they do not work well with
image reflections and transparent material. Again, we ob
serve that the points recovered using constrained search are
worse.

We have shown that omnidirectional depth data (whose
denseness depends on the amount of local texture) can be
extracted using a set of simple techniques: carnera calibra
tion, image composing, feature tracking, the 8-point algo
rithm, and constrained search using the recovered epipolar
geometry. The advantage of our work is that we are able
to extract depth data within a wide field of view simultane
ously, which removes many of the traditional problems as
sociated with recovering camera pose and narrow-baseline
stereo. Despite the practical problems caused by using un
sophisticated equipment which result in slightly incorrect
panoramas, we are still able to extract reasonable 3-D data.
Thus far, the best real data results come from using uncon
strained tracking and 8-point algorithm.
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Figure 9: Panorama of laboratory after composing.
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