
Animating Pictures with Eulerian Motion Fields

Aleksander Holynski Brian Curless Steven M. Seitz Richard Szeliski

University of Washington

eulerian.cs.washington.edu

Figure 1: Given a single input image (a), our method estimates an image-aligned motion field (b), and uses it to create a looping video (c).

Abstract

In this paper, we demonstrate a fully automatic method

for converting a still image into a realistic animated loop-

ing video. We target scenes with continuous fluid motion,

such as flowing water and billowing smoke. Our method re-

lies on the observation that this type of natural motion can

be convincingly reproduced from a static Eulerian motion

description, i.e. a single, temporally constant flow field that

defines the immediate motion of a particle at a given 2D

location. We use an image-to-image translation network to

encode motion priors of natural scenes collected from on-

line videos, so that for a new photo, we can synthesize a

corresponding motion field. The image is then animated

using the generated motion through a deep warping tech-

nique: pixels are encoded as deep features, those features

are warped via Eulerian motion, and the resulting warped

feature maps are decoded as images. In order to produce

continuous, seamlessly looping video textures, we propose

a novel video looping technique that flows features both for-

ward and backward in time and then blends the results. We

demonstrate the effectiveness and robustness of our method

by applying it to a large collection of examples including

beaches, waterfalls, and flowing rivers.

1. Introduction

For humans, a picture often contains much more than a

collection of pixels. Drawing from our previous observa-

tions of the world, we can recognize objects, structure, and

even imagine how the scene was moving when the picture

was taken. Using these priors, we can often envision the

image as if it were animated, with smoke billowing out of

a chimney, or waves rippling across a lake. In this paper,

we propose a system that learns these same motion priors

from videos of real scenes, enabling the synthesis of plau-

sible motions for a novel static image and allowing us to

render an animated video of the scene.

General scene motion is highly complex, involving per-

spective effects, occlusions, and transience. For the pur-

poses of this paper, we restrict our attention to fluid motions,

such as smoke, water, and clouds, which are well approx-

imated by Eulerian motion, in particular, particle motion

through a static velocity field.

Our proposed method takes as input a single static im-

age and produces a looping video texture. We begin by us-

ing an image-to-image translation network [29] to synthe-

size an Eulerian motion field. This network is trained using

pairs of images and motion fields, which are extracted from

a large collection of online stock footage videos of natural

scenes. Through Euler integration, this motion field defines

each source pixel’s trajectory through the output video se-

quence. Given the source pixel positions in a future frame,

we render the corresponding frame using a deep warping

technique: we use an encoder network to transform the in-

put image into a deep feature map, warp those features using

a novel temporally symmetric splatting technique, and use a

decoder network to recover the corresponding warped color

image. Lastly, in order to ensure our output video loops

seamlessly, we apply a novel video looping technique that

operates in deep feature space.

43215810



Our contributions include (1) a novel motion represen-

tation for single-frame textural animation that uses Euler

integration to simulate motion, (2) a novel symmetric deep

splatting technique for synthesizing realistic warped frames,

and (3) a novel technique for seamless video looping of tex-

tural motion.

2. Previous Work

2.1. Video Textures

There is a large body of work aimed at producing looping

videos, known variously as video textures, cinemagraphs,

or live photos. These techniques typically take as input a

longer video sequence and, through some analysis of the

motion, produce a single seamlessly looping video, or an

infinite (yet not obviously looping) video [21]. The term

cinemagraph often refers to selective animation of loop-

ing clips, where only certain parts of the frame, as chosen

by the user, are animated (or de-animated) [2]. Newer ap-

proaches [26, 34, 13, 12, 17] perform this task fully auto-

matically, determining which regions are easily looped, and

which regions contain motions that are large in magnitude

or otherwise unsuitable for looping. These approaches have

also been extended to operate on specific domains, such as

videos of faces [2], urban environments [33], panoramas

[1], and continuous particle effects [3, 14]. All these meth-

ods, however, require a video as input.

2.2. Single­image animation

There are also a number of methods aimed at animating

still images. Recently, these techniques have gained popu-

larity through commercial applications such as Plotagraph1

and Pixaloop2, which allow users to manually “paint” mo-

tion onto an image. In the following, we focus on ap-

proaches to perform some of this annotation automatically.

Physical simulation. Instead of manually annotating the

direction and magnitude of motion, the motion of certain

objects, such as boats rocking on the water, can be physi-

cally simulated, as long as each object’s identity is known

and its extent is precisely defined [5], or automatically iden-

tified through class-specific heuristics [9]. Since each object

category is modeled independently, these methods do not

easily extend to more general scene animation.

Using videos as guidance. Alternatively, motion or ap-

pearance information can be transferred from a user-

provided reference video, containing either similar scene

composition [20], aligned information from a different do-

main, such as semantic labels [28], or unaligned samples

from the same domain [24, 4]. Instead of a single user-

provided video, a database of homogeneous videos can be

1https://app.plotaverse.com
2https://www.pixaloopapp.com

used to inherit nearest-neighbor textural motion, assuming

a segmentation of the dynamic region is provided [18].

Transformations in latent space. Recent advances in

deep learning have enabled realistic, high-resolution image

synthesis using generative adverserial networks (GANs).

Many of these systems operate by representing images or

scenes as a latent feature vector, which is decoded into a

synthesized image. By perturbing the latent vector, or per-

forming a randomized walk in the latent feature space, the

resulting decoded images remain plausible, while also vary-

ing temporally [23, 8, 10]. These animations can visualize

the space of possible appearances, but do not necessarily

animate plausible motion.

Instead of a random walk, one can also directly control

movement by applying spatial warps to latent features [15].

Still, deciding how to warp the image is non-trivial — to

produce a realistic video, the applied transformations must

correspond with feasible motion in the scene.

Using learned motion or appearance priors. Deep

learning also enables motion synthesis from single-frame

inputs [7, 27]. Similarly, video prediction methods [35, 32,

11, 31, 19] can predict future video frames from a single

image, even modelling the inherent multi-modality of pre-

dicting the future. These techniques typically predict a set

of future frames at once, and thus are limited to either low

spatial resolution or few predicted frames.

Most similar to our work, Endo et al. [6] demonstrate

high-quality motion and appearance synthesis for animat-

ing timelapses from static landscape imagery. In our evalu-

ations, we provide comparisons to this technique, showing

that our method more reliably estimates motion for scenes

with fluids and animates videos with fewer visible artifacts.

3. Overview

Given a single static image I0, we generate a loop-

ing video of length N + 1, consisting of frames It with

t ∈ [0, N ]. Our pipeline begins by using an image-to-image

translation network to estimate a corresponding motion field

M (Section 4), which is used to define the position of each

pixel in all future frames. We use this information to an-

imate the image through a deep warping technique (Sec-

tion 5). Finally, in order to produce seamlessly looping

videos, we introduce a technique to ensure that our videos

always start and end with the same frame (Section 5.2). Our

approach is summarized in Figure 2.

4. Motion estimation

We begin by describing the motion model and the mo-

tion estimation network. Given an image as input, we

wish to synthesize plausible motion for the observed scene.

Prior work accomplishes this task through recurrent predic-

tion of incremental flow fields [6], theoretically enabling

43225811



Figure 2: Overview: Given an input image I0, our motion estimation network predicts a motion field M . Through Euler integration, M

is used to generate future and past displacement fields F0→t and F0→t−N , which define the source pixel locations in all other frames t.

To animate the input image using our estimated motion, we first use a feature encoder network to encode the image as a feature map D0.

This feature map is warped by the displacement fields (using a novel symmetric splatting technique) to produce the corresponding warped

feature map Dt. The warped features are provided to the decoder network to create the output video frame It.

generation of an infinite number of future frames at high-

resolution. In practice, however, recurrent estimation often

results in long-term distortion, since predicted motions are

dependent on previously generated frames. In contrast, our

motion field is only predicted once, given the input image,

and thus does not degrade over time. Even though we use a

single static motion field to represent the motion of an en-

tire video, we can still model complex motion paths. This is

because our motion field M is a static Eulerian flow field,

i.e., a 2D map of motion vectors where each pixel’s value

defines its immediate velocity, which does not change over

time. We use M to simulate the motion of a point (particle)

from one frame to the next via Euler integration:

x̂t+1 = x̂t +M(x̂t), (1)

where x̂t is the point’s (x, y) coordinate in frame t. In other

words, treating each pixel as a particle, this motion field is

the flow between each frame and its adjacent future frame:

M(x̂t) = Ft→t+1(x̂t) (2)

To synthesize this motion field, we train an image-to-

image translation network [29] on color-motion pairs, such

that when provided with a new color image I0, it estimates

a plausible motion field M . Given an image, M is only esti-

mated once through an inference call to the network. Once

estimated, it can be used to define the source pixel positions

in all future frames t by recursively applying:

F0→t(x̂0) = F0→t−1(x̂0) +M(x̂0 + F0→t−1(x̂0)) (3)

This results in displacement fields F0→t, which define the

trajectory of each source pixel in I0 across future frames

It. These displacement fields are then used for warping the

input image, as further described in Section 5. Computing

F0→t does not incur additional calls to the network — it

only uses information from the already-estimated M .

Note that unlike Endo et al. [6], who predict backward

flow fields for warping (i.e., using bilinear backward sam-

pling), we predict the forward motion field, i.e., aligned

with the input image. In our evaluations, we show that pre-

dicting forward motion results in more reliable motion pre-

diction and sharper motion estimates at object boundaries.

As a result, this enables more realistic animation of scenes

with partial occlusions, since regions that are moving are

more precisely delineated from those that are not.

5. Animation

Once we have estimated the displacement fields F0→t

from the input image to all future frames, we use this infor-

mation to animate the image. Typically, forward warping,

i.e., warping an image with a pixel-aligned displacement

field, is accomplished through a process known as splat-

ting. This process involves sampling each pixel in the in-

put image, computing its destination coordinate as its initial

position plus displacement, and finally assigning the source

pixel’s value to the destination coordinate. Warping an im-

age with splatting unfortunately suffers from two significant

artifacts: (1) the output is seldom dense — it usually con-

tains holes, which are regions to which no source pixel is

displaced, and (2) multiple source pixels may map to the

same destination pixel, resulting in loss of detail or aliasing.

Additionally, the predicted motion fields may be imperfect,

and naively warping the input image can result in bound-

ary artifacts. In the following section, we introduce a deep

image warping approach to resolve these issues.

43235812



Figure 3: Deep warping: Above: Naı̈ve splatting of RGB pixels

results in increasingly large unknown regions over time, shown in

magenta. Below: For the same frames, our deep warping approach

synthesizes realistic texture in these unknown regions.

5.1. Deep image warping

Given an image I0 and a displacement field F0→t, we

adopt a deep warping technique to realistically warp the in-

put frame and fill unknown regions. Our method consists of

three steps: (1) use an encoder network to encode the input

image I0 as a deep feature map D0, (2) use the estimated

displacement field F0→t to splat those features to a future

frame, producing Dt, and (3) use a decoder network to con-

vert the warped features to an output color image It. For

our encoder and decoder networks, we use variants of the

architectures proposed in SynSin [30]. More implementa-

tion details are provided in Section 6.

As mentioned in the previous section, unlike backward

warping, splatting may result in multiple source pixels map-

ping to the same destination coordinate. In these cases, it is

necessary to decide which value will occupy the pixel in

the destination image. For this, we adopt softmax splatting

[16], which assigns a per-pixel weighting metric Z to the

source image, and uses a softmax to determine the contri-

butions of colliding source pixels in the destination frame:

Dt(x̂
′) =

P
x̂∈X

D0(x̂) · exp(Z(x̂))
P

x̂∈X
exp(Z(x̂))

(4)

where X is the set of pixels which map to destination pixel

x̂
′. Our method infers Z automatically as an additional

channel of the encoded feature map. The learned metric

allows the network to assign importance to certain features

over others, and the softmax exponentiation avoids uniform

blending, resulting in sharper synthesized frames.

Symmetric Splatting. As feature pixels are warped

through repeated integration of our motion field M , we

typically observe increasingly large unknown regions (Fig-

ure 3), occurring when pixels vacate their original locations

and are not replaced by others. This effect is especially

prominent at motion “sources”, such as the top of a wa-

terfall, where all predicted motion is outgoing. Although

our decoder network is intended to fill these holes, it is still

desirable to limit the complexity of the spatio-temporal in-

painting task, as asking the network to animate an entire

waterfall from a small set of distant features is unlikely to

produce a compelling and temporally stable video.

Our solution to this problem leverages the fact that our

motion is textural and fluid, and thus much of the miss-

ing textural information in unknown regions can be feasibly

borrowed from other parts of the frame that lie along the

same motion path. With this intuition in mind, we describe

a symmetric splatting technique which uses reversed mo-

tion to provide valid textural information for regions which

would otherwise be unknown.

So far, the process we have described to generate an ani-

mated video involves warping the encoded feature map D0

by F0→t to produce future feature maps Vf = {D0...DN},

which are decoded to produce the output video frames.

However, since our motion map M defines the motion be-

tween adjacent frames, we could just as easily animate the

image by generating a video of the past, i.e., instead of

warping D0 into the future, use −M to compute F0→−t,

resulting in warped feature maps Vp = {D−N ...D0}. De-

coding this feature video produces an equally plausible an-

imation of the frame, with the main difference being that

the large unknown regions in Vp occur at the start of the

sequence, as opposed to at the end of the sequence in Vf .

In fact, because the direction of motion has been re-

versed, the motion sources have been replaced with motion

“sinks” and vice versa (Figure 4). This means that the lo-

cations of the unknown regions in Vp are also largely com-

plementary to those found in Vf . For instance, if our input

image contains a waterfall, Vf will begin with the input fea-

ture map D0, and pixels will gradually flow down the wa-

terfall, eventually accumulating at the bottom, and leaving a

large unoccupied region at the top. Conversely, Vp will be-

gin with pixels accumulated at the top of the waterfall, and a

large hole at the bottom, and will end with D0. We leverage

this complementarity by compositing pairs of feature maps

(one in the past, one in the future) to produce a feature map

which is typically fully dense.

We perform this composition through joint splatting: we

splat each pixel of D0 twice to the same destination frame,

once using F0→t and once using F0→t−N . Note that F0→t

does not necessarily equal −F0→−t, rather F0→−t is the

result of applying −M recursively through Eq. 3. As be-

fore, we use the softmax splatting approach with a network-

predicted per-pixel weighting metric to resolve conflicts.

This process results in a composite feature map that seldom

contains significant holes, enabling generation of longer

videos with larger magnitude motion.

43245813














