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Abstract

This paper ezamines the regisiration of multiple 3-
D data sets obtained with o laser range finder. We
propose first a new sensor calibration technique based
on the conjunction of a mathematical camera model:
the (NPBS) model N-planes B-Spline with an accurate
mechanical calibration setup. Second, we develop an
algorithm for recovering the rigid transformation (ro-
tation and translation) between two sets of 3D coord:-
nates obtained by the calibrated imaging range sensor.
Its input are sets of points lying on the surface of the
object. This input is converted into an octree-spline
which allows us to quickly compute poini to surface
distances. A robust nonlinear least squares minimiza-
tion technique then finds the optimal pose by minimiz-
ing the sum of squared distances between the iwo sets
of 3D coordinates. We have applied this localization
algorithm to matching human face surfaces and have
obtained highly accurate results.

1 Introduction

Estimating the pose of a 3D object from range data
is a classical problem in computer vision. Given a
model of the object in a coordinate system Refiodel
and given some 3D coordinates of surface points in a
coor§inate system Refsensor, the problem is to estimate
the 6-component vector p that defines the rigid body
transformation T between Refsensor and Refmoder (ro-
tation and translation). If a matching score can be
provided at the end of the parameters estimation, such
a localization scheme can be integrated into a more
general recognition algorithm. However, the model-
based 3D localization problem itself has many applica-
tions. For instance, in the medical and surgical fields,
various imaging sensors can provide specific informa-
tion for a same patient (e.g., Computed Tomography
(CT), Magnetic Resonance Imaging (MRI), PET and
3D Ultrasound images). A real need is to register all of
these 3D images in the same reference system, and to
then link these images with the operating instruments
such as guiding systems or robots [1]. To achieve this
goal, one possibility is to use some anatomical sur-
faces as references in all these images. In some cases,
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it becomes necessary to use a laser range finder fixed
to one imaging device to acquire the skin surface of a
patient, and then to registrate this reference surface
with the skin surface segmented on another imaging
device [2].

The method described in this paper to solve the 3D
localization problem is very general. Keeping in mind
the medical applications, our main requirement is to
achieve the best accuracy possible for the 6 rigid body
transformation parameters. Thus, accuracyis the pre-
dominant theme of this paper. Moreover, our method
needs to be very general and applicable to a wide class
of objects. For instance, no global constraint can be
introduced about the shape of a smooth object such
as a human face (e.g., no planar surfaces, no symme-
tries, no global modelling with superquadrics). Thus,
the second requirement is to perform the matching
process for arbitrary free-form smooth surfaces. For
our medical applications, the other requirements are
to compute an estimate of the uncertainties in the 6
parameters, and to perform the matching process in a
reasonable time. Obviously, it would be very useful to
meet these requirements in many other applications of
model-based 3D localization such as pattern recogni-
tion, motion estimation, and robot manipulation.

A general model-based sensing process can be di-
vided into three stages: first, the construction of a 3D
model for a given object, second, the measurements
of properties of the object in the environment, and
third, the interpretation of these measurements. To
our knowledge, no method that deals with these three
steps meets the previously defined requirements with
respect to accuracy and generality. Usually, authors
focus on only one of these steps. Because accuracy,
which is our first requirement, must be controlled at
each stage, our method has to deal with these three
levels of sensing. In this paper, we present new algo-
rithms for each of these three steps, we present some
results about the integration of these algorithms, and
we show that our defined requirements are met.
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Figure 1: N-planes method for camera calibration

2 Range Imaging Sensor Calibration

Among many sensors that provide 3D coordinates,
we have chosen to focus on laser range finders [3]. Our
sensor is made of a video camera which observes the
projection of a laser plane onto an object. It seems
surprising that very few papers describe an accurate
calibration method for these systems, and classically
many authors use approximations. [4] presents a gen-
eral calibration method, but its drawback is to prop-
agate the camera calibration errors to the determina-
tion of the laser plane. Thus we have purposed a new
accurate calibration method for both the camera and
the laser plane.

2.1 Previous work on camera calibration
A complete camera calibration review has been pro-
posed by [6]. Two different main categories can be
distinguished. (A) First, some methods consist in de-
termining a perspective matrix using homogeneous co-
ordinates [6, 7]. Some additional parameters are then
added to this simple pin-hole model in order to take
various complex physical phenomena into account [7].
(B) Another approach, much less known uses only a
mathematical model for estimating the mapping be-
tween the 2D pixels and the 3D projection lines. The
method called the two-planes method was first pro-
posed in (8] and then extended in [9]. The principle of
the basic method is described on figure 1: each pixel
(u v) of the image plane is linked to 2 points P, and P,
that belong respectively to two real calibration planes:
P, and P;. Each plane P; is associated with a coordi-
nate system R; such that the plane equation is 2 = 0
in the coordinate system R;. From external measure-
ments, these plane equations and coordinate systems
R; are known in a reference coordinate system Refy.
Thus, the calibration process consists in estimatin
the transformations between image coordinates (u v%
and coordinates of points Py = (1 y; 0)! in R, , and
P; = (z2 y; 0)* in R;. Three solutions have been pro-
posed for these transformations:linear,quadratic, and
local. In both categories (A) and (B), the need to es-
timate local distorsion has been pointed out by several
authors and the most powerful approach has been to
consider linear approximations in triangular or rect-
angular patches delimited by calibration points [7, 8].
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Figure 2: calibration setup made of an articulated
plate with 3 d.o.f.

In next section, we propose to extend and generalize
these piecewise linear approximations by using regu-
larization theory.
2.2 The NPBS model for camera calibra-
tion

We suppose that any pixel (v v) of the image plane
can be linked to a 3D line of sight, and choose to define
a line of sight by two points P and P, that belong to 2
planes P; and P,. Thus, the most general formulation
of camera calibration is to estimate a function from R?
(image coordinates) to R* (the space of 3D lines has
a dimension 4). Thus our method can be seen as an
extension of the two-planes model [8]. Using notations
presented on figure 1, the problem is to estimate a
function F : R? — R* defined by

(z1,91, 22, 52) = F(u, ). (1)

For convenience, we introduce the four functions
F;,,Fy,, F;,, Fy, defined by

zi = Fp(u,v) ¥ = Fy,(uw,v) i={1...2} (2)

In the calibration process, given a data set of pixels
(uj,v;) linked to calibration points (z,;,y,,) for Py,
and given a data set of pixels a:‘k’ vk ) linked to calibra-
tion points (z3,, y2, ) for P2, the problem is to interpo-
late the data with functions Fy , Fy,, Fy,, F,,. Here,
we see that camera calibration comes to a classical
problem of approximation of some functions f : R? —
R, given irregularly distributed data points. For our
work, we use the spline theory and bicubic B-Spline
functions to represent the four functions of (2), This
model introduced in this paper is called the N-Planes
B-Spline model and is abbreviated as NPBS. Because
we need a physical representation of theses planes, a
calibration set-up has been conceived. It is a metallic
plate, containing 15x15 holes illuminated by the back
side, mounted on an articulated system with three de-
grees of freedom (dof): two rotations defined by angles
6 and ¢ and one translation measured by a variable 7.
The transformation [H(6, ¢, T)] between coordinates
(X Y Z) expressed in R, and (z y z) in Refy (asso-
ciated to the base of the articulated system) is known



through accurate mechanical assembly. A calibration
plane P; i = {1...2} defined by its 3 d.o.f. (6;, ¢, Ti),
and associated to the transformation [H;] gives for any

pixel (u,v) a point P; = (z; 3 0)k, Adding B-Spline

functions introduced in (2) the coordinates of P; are Camera

given in the absolute coordinate system Refq by :
(X Yi Zi)her, = [Hl(Fou(u,v) Fyi(w,9) 0),  (3)

Finally, each pixel (u,v) is linked to a line of sight
D given by 2 point P; and P in Refo. We can use
more than two planes and associate to the pixel (u,7v)
the line that fits all points Py, Ps, ... Py (with a least
squares approximation) of N planes. This scheme de-
fines the NPBS model.

Using the calibration set-up we collect calibration
data (zi,, ¥y, i, vi, ), b = {1... K} for each calibra-
tion plane ¢ = {1...2} (typically, K = 120). The
estimation of the NPBS model with the calibration
data is described in [10]. Using spline theory, this
process estimates the 4 functions f(u,v), f beeing
Fy,, Fy,, Fz0rFy,, with :

n-1 n-1

f(u,v) = Z Z &m,i Bm(u) Bi(v)

m=-3[=-3

(4)

where n is the number of subdivisions on the » and v
length, By, and B; are the cubic spline components of
the Base Spline [11]and & the matrix of (n + 3)? coef-
ficients am; to be computed. Setting our problem as a
classical regularization problem, the B-Spline function
f minimizes a functional J defined by :

K
I(f) =5+ pY_delf, (ur, o)) (5)
k=1

where the first term of J(f) tends to smooth the sur-
face, while the second term tends to interpolate the
data.

2.3 Range imaging sensor model and cal-

ibration setup

Succesive motorized regular displacements mea-
sured by d of the laser plane on the object viewed
by the camera give a set of points (u,v,d) which
are transformed into 3D coordinates (X,Y, Z) by tri-
angulation (figure 2.3a ). The calibration problem
is to find the transform G : R® — R?3 defined by:
(X,Y, Z) = G(u,v,d). All this can be resumed by cal-
culating the laser-plane line of sight intersection. To
obtain the equation of the laser plane in the coordinate
system of the articulated calibration device Refq, we
tune manually (6, ¢, T) until the laser plane and the
calibration plate meet exactly. The intensity of the
light must be maximal at the bottom of the device
(figure 2.3b).
2.4 Results for camera and laser range

finder calibration
2.4.1 Results for camera calibration

To obtain results about accuracy for each model, we
first calibrate the camera (Pers, Line, Quad, Loca are

0 Translation of the laser plane

Moving laser plane Laser plane
0

Absolute
coordinate

Maximum

illumigation
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Figure 3: Active triangulation: (a) configuration of a
range image sensor with a moving laser plane . (b)
Calibration of the laser plane tuning (8, ¢, T).

Method: | Pers | Line | Quad | Loca | NPBS
S(inmm) | 2.19 | 3.5 | 1.63 | 0.67 | 046
o(inmm) | 0.63 | 0.90 0.39 [ 0.20 0.15

Table 1: Test of 5 camera models. Eight experiments
have been conducted for each camera model. For each
experiment, 5 data planes of 120 data points have been
acquired (3 calibration planes, 2 test planes).

respective abbreviation for the perspective transfor-
mation model, the 2 Planes linear, quadratic, local,
model) Then, we compute the mean and max dis-
tances o and & between points theoricaly (using arbi-
trary positions of the metallic plane with the calibra-
tion device) and pratically (with the camera model)
determined. Results are reported in table 1, they show
tlll;llt the NPBS method improves the accuracy notice-
ably.

2.4.2 Results for laser range finder calibration

For eight random positions of the metallic plate we
record the plate configuration (8, ¢, T) and compute
the true equation of this plane P. Using the range
imaging sensor calibrated with the NPBS method, we
collect a set of point (X;,Y;, Z:),i = {1...M} (M is
several thousands, the data are collected in a cube of
30cm3) which belong to the surface of the metallic
plate. For each of these planes we compute the maxi-
mal and mean distance from the M points (X;,Y;, Z;)
to the plane P which are X, = 1.01mm, o, = 0.54mm,
We calculate the maximal an mean angle between the
two planes Py;; and P and find respectively 0.30° and
0.18°.

2.5 Conclusion about sensor calibration
The defined NPBS model can be applied to any
camera, to digitized radiography and to range imag-
ing sensors. It is an alternative to the complex mod-
elling of cameras and frame grabbers with parameters
that have physical meanings. The NPBS model does



not require any a priori knowledge about the sensor:
the only assumption is that each pixel is associated to
a line of sight. We have combined this mathematical
modelling with an accurate calibration setup based on
an articulated plate with 3 degrees of freedom. This
device enables us to acquire accurate calibration data
sets. Using a specific mechanical feature, the camera
and a laser plane are calibrated independantly, with-
out propagating uncertainties. The NPBS calibration
method has been tested for both cameras and range
imaging sensors. The achieved accuracy meets the re-
quirements for the intended applications (relative ac-
curacy for camera 1/2000 and relative accuracy for
range imaging sensor 1/500). Most importantly, the
NPBS method results in an accuracy which is similar
to the range imaging sensor resolution.

3 Modelling of surface points using an
Octree-Spline

After accurate acquisition of range data, the second
step of model-based sensing is to define a model. This
section describes previous work in this field and our
choice.

3.1 Previous work

In model-based recognition and localization, the
choice of a model for the object depends on the match-
ing algorithm that will be used. For this reason, sev-
eral models have been proposed in order to speed or
to simplify the task of matching the data with the
model. See [12] for a review. Models that have been
used include polyhedrals, generalized cylinders, su-
perquadrics, Extended Gaussian Images (EGI), global
invariants Hough transforms, surface patches, and lo-
cal invariants. For most of these approaches, objects
are modeled by graphs of primitives (e.g., edges or
vertices, planar patches, polynomial patches). Thus
they raise the problem of segmentation into primitives
and the problem of correspondence between primitives
for the matching process. EGI methods are limited
to convex objects. Hough transform methods and
methods that match invariants (such as moments) are
global and thus they are sensitive to segmentation er-
rors. Such errors occur when only one range image is
used or when objects are partially occluded.

3.2 Octree spline

In this paper, a low-level surface representation is
introduced: the Octree-Spline. The choice of a low-
level representation is motivated by our main objective
which is accurate localization, instead of recognition.
Here the Octree-Spline enables to build a 3D distance
map. The purpose of a distance map is to pre-compute

distances d from points to surface and to store them.

Such a distance J(q, S) between q and S is defined by
the minimum of the distances between q and all points

s; : d(q,S) = mins, d(q,s;) = d(q,s;,,,), where d
is the Euclidean distance. A regular distance map
would have about 5123 or even 10243 nodes in order
to provide us with the required accuracy. This would
raise memory problems, and explains our motivation
to introduce an adaptive hierarchical representation :
the Octree-Spline.
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First, a dense set of n? points s; lying on the sur-
face of the object is the required initial object repre-
sentation (almost all surface representations can gen-
erate this point representation). The octree-spline
is built by an octree decomposition of these surface
points, augmented with a continuous 3-D function
that approximates the Euclidean distance to the sur-
face. See [13] for a complete description of an octree-
spline adapted to solve a 3D/2D matching problem.
After the classical octree decomposition of the surface
points, the octree is further subdivided (or restricted)
to ensure that two nodes which are neighbors differ in
size by at most a factor of 2, then distances d(q, S) are
computed at each corner of terminal nodes in an ex-
haustive manner, and finally distance discontinuities
between neighboring nodes are eliminated. The intu-
itive idea behind this geometrical representation is to
have more detailed information Si.e., more accuracy)
near the surface than far away from it. This repre-
sentation combines the advantages of adaptive spline
functions and hierarchical data structures.

After the previous steps have been performed,

d(q, S) can be computed for any point q using a tri-
linear interpolation of the 8 corner values dijx of the
terminal node N that contains the point q (a binary
search starting from the root is used to find N). If

(u,v,w) € [0,1]3 are the normalized coordinates of q
in the cube N,

11 1
d(a,8) = D3N bi(u)b,(v)br(w)dije ()
=0 j=0 k=0
with b[(t) =&t + (1 — 6()(1 —t).
3.3 Construction of an octree spline from

a set of range data

Classically, object models are directly inferred from
CAD models. But for some applications, the model
can be only derived from sensor data. We have consid-
ered this latter case. Using the laser range finder de-
scribed in section 2, we obtain one range image which
is made of a set of surface points s;,i = 1...n2. Typ-
ically, by moving the laser plane each 2 mm, using
a 512 x 512 camera image, we obtain n? = 5,000 or
10, 000 points. Then this set of points is used as input
of the octree-spline construction.

4 3-D Localization

As previously discussed in section 3.1, many algo-
rithms have been proposed for model-based recogni-
tion and/or positioning. Each of these algorithms has
its own advantage which is correlated to the choice of
a model description. As we have chosen a low-level ap-
proach for our model description (the octree-spline),
we go on this low-level approach for the localization
algorithm. As before, this choice is justified by the
requirement to perform the localization with high ac-
curacy for a free-form surface.
4.1 Problem formulation

In this section, we present our formulation of the
localization problem as the minimization of an en-
ergy. We look for the rigid transformation T(p)



between a surface S known in Refjoder and repre-
sented by an octree-spline and a set of Mp points
q; known in Refsensor- T(p) is a 4 x 4 transforma-
tion matrix that depends on a 6-components vector
p=(T: Ty T. ¢ 6 ¢)* (3 translations and 3 Euler
angles). First, we make the assumption that most of
the points q; match the surface. In the ideal case,
when the correct matching is reached, each point q;
is transformed in Refmodel into a point r; that is on

the surface S, and every distance d(r;, S) is zero. This
leads us to formulate the matching problem as a least
squares minimization of the energy or error function

E(p) :
Mp

Mp
E(p) =Y i@ = Y. 3 d(TE) s S (7

i=1 !

where o7 is the variance of the noise of the measure-
ment e;(p). E(p) is the weighted sum of squares of
the distances between the points r; and the surface
S. Given an initial estimate p = po of the 3-D/3-D
transformation parameters, a nonlinear least squares
iterative minimization of the energy (or error function)
E(p) is performed.

4.2 Least squares minimization

To perform the nonlinear least squares minimiza-
tion, we use the Levenberg-Marquardt algorithm be-
cause of its good convergence properties. In or-
der to compute the gradient and Hessian of E&p),
the Levenberg-Marquardt algorithm requires the first
derivatives of each e;(p). For any component p; of p,
we obtain

de;(p)

o) _ win(e) .51 [ () ()] - @

Thus, computing the 6-component gradient of E(p)
only requires computing the gradient of the octree
spline distance d (by differentiating (6)) and comput-
ing the 3 derivatives of T(p) with respect to the 6
parameters p.

The end of the iterative minimization process is
reached either when E(p) is below a fixed threshold,

when the difference between parameters |[p(*) —p(*=1)|
at two successive iterations is below a fixed threshold,
or when a maximum number of iterations is reached.
At this point, we compute a robust estimate of the pa-
rameter p by throwing out the measurements where
e?(p) > of and performing some more iterations
;14]. This process removes the influence of the out-
iers which are likely to occur when the model does not
describe the whole surface of the object. The thresh-
old for outlier rejection must be fixed according to
application-specific knowledge or by experimentation.

Finally, at the end of the iterative minimization
procedure, we estimate the uncertainty in the param-
eters. The covariance matrix Cov(p) is computed by
inverting the final Hessian matrix and eigenvalue anal-
ysis of Cov(p) is performed {15]. Results and exper-
iments on synthetic data for the localization process
are shown in[13]
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Figure 4: Setup that enables to applicate a known
transformation between two range images: the head
is stuck on the articulated plate, and each position
of the plate is known in the coordinate system Refo,
thus the transformation between the two positions of
the head can be computed in Refo.

5 Results for the whole sensing process

5.1 Experiments

The 3 steps of model-based sensing described in this
paper have been integrated in order io test the over-
all accuracy of the localization method. First, a laser
range finder has been calibrated as described in section
2. Then a polystyrene head (phantom) has been stuck
on the articulated plate described in section 2. For a
recorded position (©1, &1, T}) of the head on the plate,
a range image of the face has been acquired. Then a
known transformation has been applied to the head.
For this second head position recorded by the parame-
ters (@q, &2, T3), a second range image has been taken.
For both images, range data have been given in the co-
ordinate system Refy linked to the base of the articu-
lated device. Thus, the true rigid body transformation
T* between the head surface in first location and the
head surface in second location has been calculated
in Refo, by computing the composition of the inverse
of the transformation H(©,,®:,Ti) with the trans-
formation H(©2,®2,T3) . Figure 4 shows the setup
that enables this computation of the known transform
between two range images.

We then applied our new localization algorithm to
the two range images. The first image is used to build
an octree-spline that comstitutes the model. Then,
starting from an initial transformation quite far from
the solution, we start our iterative localization algo-
rithm between the range data of the second image and
the model. At each iteration k, we compute the er-
ror transformation AT®*) and we extract the norm of



Figure 6: Convergence of 3-D/3-D matching algorithm for surface S, (phantom face).
(a) initial configuration, E(p{)/Mp = 38.0, [|AtO)|| = 58.5mm, |Aal¥)| = 21.5°,
(b) after 5 iterations, E(p'®)/M; = 27.0, || At®))| = 52.7mm, |Ac®)| = 12.2°,

(c) after 9 iterations. E(p®)/Mp = 1.6, ||At®)|| = 2.8mm, |Aal)| = 0.7°.

translation error At(*) and Aa*), the angle of the
rotation component of AT(*). The values of ||At(¥)]|
and then we compute JAa(¥)| are displayed to monitor
the convergence of the algorithm towards the optimal
solution. Finally, robust estimation is performed by
removing the outliers and by starting some more iter-
ations.

5.2 Final results

This section describes a typical convergence. Fig-
ure 5 shows the convergence of the algorithm towards
the real solution. The octree-spline is built from 7,500
points (first range image). The second range image
gives 2,700 points (all data are not used and a subsam-
ple is randomly selected). In about 10s on a DECsta-
tion 5000/200, the algorithm reaches a first minimum.
At this point, the rotation error is 0.7° and the trans-
lation error is 2.9mm. After the outliers are automati-
cally removed (34 data are suppressed), the algorithm
starts again. At the end of the complete algorithm
(which takes about 35s), the accuracy is about 0.4° for
rotation and 1.2mm in translation. Such an accuracy
is similar in magnitude to the resolution of the range
imaging sensor. Thus the main result is that neither
the calibration process with the NPBS method, nor
the object modelling with the octree-spline, nor the
robust minimization algorithm introduce appreciable
inaccuracies. Two other identical experiments have
been made, results give the same order of accuracy
for both rotation (about 0.5°) and translation (about
1mm).

5.3 Discussion of the localization algo-
rithm

The localization algorithm has been tested in sev-
eral experiments and for almost all cases the method
has met our requirements. In this section, we discuss
when the algorithm fails.

First, if the model is constructed from a set of
points that describe one part of the object and if the
range data describe another part of the object, ob-
viously the distance minimization gives a wrong es-
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timate. However, if the range data describes an in-
cluded set of the model surface, the algorithm works
perfectly. Moreover, if the number of data points that
are not on the surface described by the model is low,
these points can be considered as outliers and they
are automatically removed by the robust estimation
process.

A second failure case occurs when the initial esti-
mate parameters are too far away from the solution.
Because the energy function that we minimize is not
convex in the whole parameter space, some conver-
gence towards local minima can occur. For our in-
tended medical applications, however, this problem
does not appear since we always have a good initial es-
timate given by a priori knowledge (e.g. the patient’s
face is always more or less facing up). For other ap-
plications, an exhaustive search from randomly spread
starting points should give the solution since we expect
the energy function to exhibit only a few local minima
for most natural objects. This point constitutes one
of our future research work.

Our algorithm has been developed to accurately lo-
cate one object in a simple scene. Extensions to recog-
nition and extensions to scenes with several objects
have not been studied.

Finally, our algorithm can be considered as an ex-
tension of the work described in [16], but for more
general point to surface distances, for application to
range data, and for faster computation times. Simi-
lar work has also been recently published in [12], au-
thors propose a very general solution that would prob-
ably meet our requirements. However, in our method,
only a surface point representation is necessary which
makes it very easy to use, and our simple minimiza-
tion algorithm (based on a continuous distance map)
seems much faster (although not the same data have
been used).

6 Conclusion

There are many applications of model-based local-
ization in the medical field. The main requirements



common to these various applications are to perform
the localization as accurately as possible and to han-
dle smooth free-form objects of arbitrary complexity.
Taking into account these requirements, this paper has
presented three original methods, one for each level of
the sensing process.

First, the importance of accurate data has been
stressed and a new method for camera and range imag-
ing sensor calibration has been proposed. The camera
calibration problem has been set within a strict math-
ematical formulation using regularization theory. This
lead us to develop the N-Planes B-Splines (NPBS)
method. As well, accurate mechanical devices have
been designed to obtain accurate calibration data and
to calibrate independantly a camera and a laser plane.
With this method, experiments show that the accu-
racy obtained is similar to the sensor resolution. The
second contribution of this paper has been to propose
a new low-level modelling of surfaces, which is very
general. A set of 3D points is used to construct an
octree-spline, a new representation that combines an
octree with a continuous 3-D distance map. Our third
contribution has been to propose a new algorithm for
model-based localization using robust nonlinear least
squares minimization. Fast and accurate convergence
is obtained with this algorithm.

All of these steps have been integrated and accu-
racy tests have been conducted for the whole sens-
ing process. One set of data is used to constitute the
model (octree-spline), and another set of range data is
matched with the previous one. The reached accuracy
for the full localization process is similar in magnitude
to the resolution of the range imaging sensor (about 1
mm in translation and about 0.5 degrees in rotation).

Thus all our requirements for medical applications
have been met: the localization is performed for a
smooth free-form object, the algorithm does not intro-
duce noticeable inaccuracy, estimation of uncertainties
is provided and the convergence time is reasonable.
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