
SynSin: End-to-end View Synthesis from a Single Image

Olivia Wiles1∗ Georgia Gkioxari2 Richard Szeliski3 Justin Johnson2,4

1University of Oxford 2Facebook AI Research 3Facebook 4University of Michigan

Figure 1: End-to-end view synthesis. Given a single RGB image (red), SynSin generates images of the scene at new

viewpoints (blue). SynSin predicts a 3D point cloud, which is projected onto new views using our differentiable renderer; the

rendered point cloud is passed to a GAN to synthesise the output image. SynSin is trained end-to-end, without 3D supervision.

Abstract

View synthesis allows for the generation of new views of

a scene given one or more images. This is challenging; it

requires comprehensively understanding the 3D scene from

images. As a result, current methods typically use multiple

images, train on ground-truth depth, or are limited to syn-

thetic data. We propose a novel end-to-end model for this

task using a single image at test time; it is trained on real

images without any ground-truth 3D information. To this

end, we introduce a novel differentiable point cloud ren-

derer that is used to transform a latent 3D point cloud of

features into the target view. The projected features are de-

coded by our refinement network to inpaint missing regions

and generate a realistic output image. The 3D component

inside of our generative model allows for interpretable ma-

nipulation of the latent feature space at test time, e.g. we can

animate trajectories from a single image. Additionally, we

can generate high resolution images and generalise to other

input resolutions. We outperform baselines and prior work

on the Matterport, Replica, and RealEstate10K datasets.

1. Introduction

Given an image of a scene, as in Fig. 1 (top-left), what

would one see when turning left or walking forward? We

Project page: www.robots.ox.ac.uk/˜ow/synsin.html.
∗Work done during an internship at Facebook AI Research.

can reason that the window and the wall will extend to the

left and more chairs will appear to the right. The task of

novel view synthesis addresses these questions: given a

view of a scene, the aim is to generate images of the scene

from new viewpoints. This task has wide applications in

image editing, animating still photographs or viewing RGB

images in 3D. To unlock these applications for any input

image, our goal is to perform view synthesis in complex,

real-world scenes using only a single input image.

View synthesis is challenging, as it requires compre-

hensive scene understanding. Specifically, successful view

synthesis requires understanding both the 3D structure and

the semantics of the input image. Modelling 3D structure

is important for capturing the relative motion of visible

objects under a view transform. For example in Fig. 1

(bottom-left), the sink is closer than the shower and thus

shifts more as we change viewpoints. Understanding se-

mantics is necessary for synthesising plausible completions

of partially visible objects, e.g. the chair in Fig. 1 (top-left).

One way to overcome these challenges is to relax

the single-image constraint and use multiple views to

reconstruct 3D scene geometry [12, 15, 51, 76]. This also

simplifies semantic modelling, as fewer positions will be

occluded from all views. Recent methods [56, 68, 74] can

be extremely effective even for complex real-world scenes.

However the assumption of multiple views severely limits

their applicability, since the vast majority of images are not

accompanied by views from other angles.

17467



Another approach is to train a convolutional network to

estimate depth from images [13, 33], enabling single-image

view synthesis in realistic scenes [40]. Unfortunately this

approach requires a training dataset of images with ground-

truth depth. Worse, depth predictors may not generalise

beyond the scene types on which they are trained (e.g. a net-

work trained on indoor scenes will not work on outdoor im-

ages) so this approach can only perform view synthesis on

scene types for which ground-truth depth can be obtained.

To overcome these shortcomings, there has been grow-

ing interest in view synthesis methods that do not use any

3D information during training. Instead, an end-to-end

generative model with 3D-aware intermediate representa-

tions can be trained from image supervision alone. Existing

methods have shown promise on synthetic scenes of single

objects [31, 54, 55, 60, 67], but have been unable to scale

to complex real-world scenes. In particular, several recent

methods represent 3D structure using dense voxel grids

of latent features [36, 54]. With voxels, the fidelity of 3D

information that can be represented is tied to the voxel

dimensions, thus limiting the output resolution. On the

other hand, point clouds are more flexible, generalise

naturally to varying resolutions and are more efficient.

In this paper we introduce SynSin, a model for view

synthesis from a single image in complex real-world

scenes. SynSin is an end-to-end model trained without

any ground-truth 3D supervision. It represents 3D scene

structure using a high-resolution point cloud of learned

features, predicted from the input image using a pair of

convolutional networks. To generate new views from the

point cloud, we render it from the target view using a high-

performance differentiable point cloud renderer. SynSin

models scene semantics by building upon recent advances

in generative models [3], and training adversarially against

learned discriminators. Since all model components are

differentiable, SynSin is trained end-to-end using image

pairs and their relative camera poses; at test-time it receives

only a single image and a target viewpoint.

We evaluate our approach on three complex real-

world datasets: Matterport [4], RealEstate10K [74], and

Replica [58]. All datasets include large angle changes

and translations, increasing the difficulty of the task. We

demonstrate that our approach generates high-quality

images and outperforms baseline methods that use voxel-

based 3D representations. We also show that our trained

models can generalise at test-time to high-resolution output

images, and even to new datasets with novel scene types.

2. Related work

Research into new view synthesis has a long history in

computer vision. These works differ based on whether they

use multiple images or a single image at test time and on

whether they require annotated 3D or semantic information.

View synthesis from multiple images. If multiple images

of a scene can be obtained, inferred 3D geometry can be

used to reconstruct the scene and then generate new views.

Traditionally, this was done using depth maps [5, 47] or

multi-view geometry [11, 12, 15, 30, 51, 76].

In the learning era, DNNs can be used to learn depth.

[1, 9, 23, 36, 38, 41] use a DNN to improve view synthesis

from a set of noisy, incomplete, or inconsistent depth

maps. Given two or more images of a scene within a small

baseline, [16, 56, 57, 63, 68, 74] show impressive results at

synthesising views within this narrow baseline. [35, 42, 54]

learn an implicit voxel representation of one object given

many training views and generate new views of that object

at test time. [14] use no implicit 3D representation. Unlike

these methods, we assume only one image at test time.

View synthesis from a single image using ground-truth

depth or semantics. A second vein of work assumes a

large dataset of images with corresponding ground-truth 3D

and semantic information to train their 3D representation

[40, 52, 62]. These methods are reliant on a large scale

benchmark and corresponding annotation effort. The depth

may be obtained using a depth or lidar camera [17, 28, 53]

or SfM [33]; however, this is time-consuming and challeng-

ing, especially for outdoor scenes, often necessitating the

use of synthetic environments. We aim to make predictions

anywhere, e.g. the wood scene in Fig. 5, and in realistic

settings, without 3D information or semantic labels.

View synthesis from a single image. DNNs can be used

to learn view synthesis in an end-to-end fashion. One such

line of work synthesises new views using purely image to

image transformations [7, 31, 43, 59, 60, 75]. Later work

performs 3D operations directly on the learned embedding

[67] or interprets the latent space as an implicit surface [55].

However, these works consider synthetic datasets with a

single object per image and train one model per object class.

Most similar to ours is the recent work of [8]. However,

they do not consider larger movements that lead to signifi-

cant holes and dis-occlusions in the target image. They also

consider a more constrained setup; they consider synthetic

object classes and mostly forward motion in KITTI [17],

whereas we use a variety of indoor and outdoor scenes.

Many works explore using a DNN to predict 3D object

shapes [18, 20, 24, 26, 64, 69] or the depth of a scene given

an image [6, 13, 33, 73]. These works focus on the quality

of the 3D predictions as opposed to the view-synthesis task.

Generative models. We build on recent advances in

generative models to produce high-quality images with

DNNs [3, 19, 27, 39, 44]. In [3, 27], moving between the la-

tent codes of different instances of an object class seemingly

interpolates pose, but explicitly modifying pose is hard to

control and evaluate. [39] allows for explicit pose control

but not from a given image; they also use a voxel represen-

tation, which we find to be computationally limiting.

7468



Figure 2: Our end-to-end system. The system takes as input an image I of a scene and change in pose T. The spatial

feature predictor (f ) learns a set of features F (visualised by projecting features using PCA to RGB) and the depth regressor

(d) a depth map D. F are projected into 3D (the diagram shows RGB for clarity) to give a point cloud P of features. P is

transformed according to T and rendered. The rendered features F̄ are passed through the refinement network (g) to generate

the final image IG. IG should match the target image, which we enforce using a set of discriminators and photometric losses.

3. Method

In this section, we introduce SynSin (Fig. 2) and in

particular how we overcome the two main challenges of

representing 3D scene structure and scene semantics. To

represent the 3D scene structure, we project the image

into a latent feature space which is in turn transformed

using a differentiable point cloud renderer. This renderer

injects a 3D prior into the network, as the predicted 3D

structure must obey geometric principles. To satisfy the

scene semantics, we frame the entire end-to-end system

as a GAN and build on architectural innovations of recent

state-of-the-art generative models.

SynSin takes an input image I and relative pose T. The

input image is embedded to a feature space F via a spatial

feature predictor (f ), and a depth map D via a depth regres-

sor (d). From F and D, a point cloud P is created which is

rendered into the new view (neural point cloud renderer).

The refinement network (g) refines the rendered features to

give the final generated image IG. At training time, we en-

force that IG should match the target image (discriminator).

3.1. Spatial feature and depth networks

Two networks, f and d, are responsible for mapping

the raw input image into a higher dimensional feature

map and a depth map, respectively. The spatial feature

network predicts feature maps at the same resolution as

the original image. These feature maps should represent

scene semantics, i.e. a higher-level representation than

simply RGB colours. The depth network estimates the

3D structure of the input image at the same resolution.

The depth does not have to be (nor would we expect it to

be) perfectly accurate; however, it is explicitly learned in

order to perform the task. The design for f and d follows

standard architectures built for the two tasks respectively:

Spatial feature network f . We build on the BigGAN

architecture [3] and use 8 ResNet blocks that maintain

image resolution; the final block predicts a 64-dimensional

feature for each pixel of the input image.

Depth network d. We use a UNet [48] with 8 downsam-

pling and upsampling layers to give a final prediction of the

same spatial resolution as the input. This is followed by a

sigmoid layer and a renormalisation step so the predicted

depths fall within the per-dataset min and max values.

Please refer to the supplement for the precise details.

3.2. Neural point cloud renderer

We combine the spatial features F and predicted depths

D to give a 3D point cloud of feature vectors P . Given

the input view transform T, we want to view this point

cloud at the target viewpoint. This requires rendering the

point cloud. Renderers are used extensively in graphics, as

reviewed in [29, 49], but they usually focus on forward pro-

jection. Our 3D renderer is a component of an end-to-end

system, which is jointly optimised, and so needs to allow for

gradient propagation; we want to train for depth prediction

without any 3D supervision but only with a loss on the final

rendered image. Additionally, unlike traditional rendering

pipelines, we are not rendering RGB colours but features.

Limitations of a naı̈ve renderer. A naı̈ve renderer projects

3D points pi to one pixel or a small region – the footprint –

in the new view. Points are sorted in depth using a z-buffer.

For all points in the new view, the nearest point in depth

(using the z-buffer) is chosen to colour that point. A non-

differentiable renderer does not provide gradients with re-

spect to the point cloud positions (needed to train our depth

predictor) nor the feature vectors (needed to train our spatial

feature network). Simply making the operations of a naı̈ve

renderer differentiable is problematic for two reasons (il-

lustrated in Fig. 3). (1) Small neighbourhoods: each point

projects to only one or a few pixels in the rendered view. In

this case, there are only a few gradients for each point in the

xy-plane of the rendered view; this drawback of local gradi-

ents is discussed in [25] in the context of bilinear samplers.

(2) The hard z-buffer: each rendered pixel is only affected

by the nearest point in the z-buffer (e.g. if a new pixel be-

comes closer in depth, the output will suddenly change).

7469



Figure 3: Comparison of our rendering pipeline to a naı̈ve version. Given a set of points ordered in a z-buffer, our renderer

projects points to a region of radius r using α-compositing, not just the nearest point. When back-propagating through our

renderer, gradients flow not just to the nearest point, but to all points in the z-buffer. (For simplicity we show 1D projections.)

Our solution. We propose a neural point cloud renderer in

order to solve the prior two problems by softening the hard

decisions, as in Fig. 3. This is inspired by [34], which intro-

duces a differentiable renderer for meshes by similarly soft-

ening the hard rasterisation decisions and [77] which ren-

derers point clouds by splatting points to a region and accu-

mulating. First, to solve the issue of small neighbourhoods,

we splat 3D points to a disk of varying influence controlled

by hyperparameters r and M . Second, to solve the issue of

the hard z-buffer, we accumulate the effects of the K nearest

points, not just the nearest point, using a hyperparameter γ.

Our renderer first projects P onto a 2D grid under the

given transformation T. A 3D point pi is projected and

splatted to a region with centre pic and radius r. The

influence of the 3D point pi on a pixel lxy is proportional to

the Euclidean distance d2(·, ·) from the centre of the region:

N (pi, lxy) = 0 if d2(pic , lxy) > r

N (pi, lxy) = 1−
d2(pic , lxy)

M
otherwise.

Though N is not differentiable, we can approximate

derivatives using the subderivative. r and M control the

spread and fall-off of the influence of a 3D point.

The projected points are then accumulated in a z-buffer;

they are sorted according to their distance di from the new

camera and only the K nearest points kept for each pixel

in the new view. The sorted points are accumulated using

alpha over-compositing (where γ is a hyperparameter):

ρimn
= N (pi, lmn) (1)

F̄mn =

K∑

i=1

ρ
γ
imn

Fi

i−1∏

j=1

(1− ρ
γ
jmn

), (2)

where F̄ is the projected feature map in the new view and

F in the original view. γ controls the blending; if γ = 0,

this is hard z-buffering. This setup is illustrated in Fig. 3.

Implementation. Our renderer must be high-performance,

since we process batches of high-resolution point clouds

during training. We implement our renderer using a

sequence of custom CUDA kernels, building upon work on

high-performance triangle rasterisation with CUDA [32].

We use a two-stage approach: in the first stage we break

the output image into tiles, and determine the set of points

whose footprint intersects each tile. In the second stage, we

determine the K nearest points for each pixel in the output

image, sorting points in depth using per-pixel priority

queues in shared memory to reduce global memory traffic.

Other approaches. This method is related to the point

cloud rasterisers of [1, 24, 70]. However, our renderer is a

simpler than [70] and we apply it in an end-to-end frame-

work. While [1] also renders point clouds of features, they

only back-propagate to the feature vectors, not the 3D posi-

tions. [24] stores the predicted points in a voxel grid before

performing the projection step; this limits the resolution.

Performance. On a single V100 GPU, rendering a batch

of six point clouds with 5122 = 262,144 points each to a

batch of six images of size 256 × 256 takes 36ms for the

forward pass and 5ms for the backward pass. In contrast,

converting the same point cloud to a 2563 voxel grid using

the implementation from [24] takes ≈ 1000ms for the

forward pass and ≈ 2000ms for the backward pass.

3.3. Refinement module and discriminator

Even if the features are projected accurately, regions

not visible in the input view will be empty in the target

view. The refinement module should inpaint [2, 10] these

missing regions in a semantically meaningful (e.g. missing

portions of a couch should be filled in with similar texture)

and geometrically accurate (e.g. straight lines should

continue to be straight) manner. To solve this task, we take

inspiration from recent generative models [3, 27, 44].

Deep networks have been previously applied to inpaint-

ing [46, 61, 66]. In a typical inpainting setup, we know

a-priori which pixels are correct and which need to be

synthesised. In our case, the refinement network should

perform two tasks. First, it should inpaint regions with no

projected features, e.g. regions on the image boundary or

dis-occluded regions. The refinement module can discover

these regions, as the features have values near zero. Second,

the refinement module should correct local errors (e.g.

noisy regions resulting from noisy depth).

7470



Figure 4: Qualitative results on RealEstate for ours and baseline methods. Given the input view and the camera parameters,

the methods are tasked to produce the target image. The red squares denote interesting differences between the methods. In

the upper row, our model better recreates the true 3D; in the bottom row, our model is better able to preserve detail.

To build the refinement network, we use 8 ResNet [21]

blocks, taking inspiration from [3]. Unlike [3], we aim to

generate a new image conditioned on an input view not a

random vector. Consequently, we find that it is important

to maintain the image resolution as much as possible to

obtain high quality results. We modify their ResNet block

to create a downsampling block. The downsampling block

is used to decrease the image resolution by two sizes before

upsampling to the original image resolution. To model the

ambiguity in the inpainting task, we use batch normalisa-

tion injected with noise [3]. We additionally apply spectral

normalisation following each convolutional layer [71].

The GAN architecture and objective used is that of [65].

We use 2 multi-layer discriminators at a lower and higher

resolution and a feature matching loss on the discriminator.

3.4. Training

Training objective. The network is trained with an

L1 loss, content loss and discriminator loss between

the generated and target image. The total loss is then

L = λGANLGAN + λl1Ll1 + λcLc.

Training details. The models are trained with the Adam

optimiser using a 0.01 learning rate for the discriminator,

0.0001 for the generator and momentum parameters (0,

0.9). λGAN = 1, λc = 10, λl1 = 1. γ = 1, r = 4 pixels,

K = 128, W = H = 256. The models are trained for 50K

iterations. We implement our models in PyTorch [45]; they

take 1-2 days to train on 3 Tesla V100 GPUs.

4. Experiments

We evaluate our approach on the task of view synthesis

using novel real-word scenes. We validate our design

choices in Section 4.3 by ablating our approach and

comparing against competing end-to-end view synthesis

pipelines. We also compare to other systems and find that

our model performs better than one based on a trained depth

predictor, which fails to generalise well to the new domain.

We additionally evaluate SynSin’s generalisation perfor-

mance to novel domains (Section 4.3) as well as higher

image resolutions (Section 4.4). Finally, we use SynSin to

synthesise trajectories from an initial image in Section 4.6,

demonstrating that it can be used for a walk-through

application. Additional results are given in the supplement.

4.1. Experimental setup

Datasets. We focus on using realistic data of indoor and

outdoor environments as opposed to synthetic objects.

The first framework we use is Habitat [50], which allows

for testing in a variety of scanned indoor scenes. The Habi-

tat framework can efficiently generate image and viewpoint

pairs for an input scene. We use two sources of indoor

scenes: Matterport3D [4], consisting of reconstructions of

homes, and Replica [58], which consists of higher fidelity

scans of indoor scenes. The Matterport3D dataset is divided

at the scene level into train/val/test which contain 61/11/18

scenes. The Replica dataset is only used at evaluation time

to test generalisability. Pairs of images are generated by

randomly selecting a viewpoint in a scene and then ran-

domly modifying the viewing angle in a range of ±20◦ in

each Euclidean direction and the position within ±0.32m.

The second dataset we use is RealEstate10K [74], which

consists of videos of walkthroughs of properties and the cor-

responding camera parameters (intrinsic and extrinsic) ob-

tained using SfM. The dataset contains both indoor and out-

door scenes. It is pre split into a disjoint set of train and test

scenes; we subdivide train into a training and validation set

to give approximately 57K/14K/7K scenes in train/val/test.

The scenes in the test set are unseen. We sample viewpoints

by selecting a reference video frame and then selecting a

second video frame a maximum of 30 frames apart. In

order to sample more challenging frames, we choose pairs

7471



Matterport [4] RealEstate10K [74] Replica [58]

PSNR ↑ SSIM ↑ Perc Sim ↓ PSNR ↑ SSIM ↑ Perc Sim ↓ PSNR ↑ SSIM ↑ Perc Sim ↓
Both InVis Vis Both InVis Vis Both InVis Vis

1. SynSin (small ft) 21.14 20.19 21.84 0.71 0.70 0.69 1.68 0.45 0.98 21.103.48 0.730.14 1.340.55 22.36 0.80 1.64

2. SynSin (hard z) 21.08 20.23 21.70 0.70 0.70 0.67 1.82 0.44 1.11 21.404.06 0.700.15 1.450.61 20.70 0.76 1.95

3. SynSin (rgb) 20.64 19.87 21.21 0.67 0.69 0.65 2.06 0.49 1.27 20.923.81 0.680.14 1.670.51 20.44 0.75 2.03

4. SynSin 20.91 19.80 21.62 0.71 0.71 0.70 1.68 0.43 0.99 22.314.97 0.740.16 1.180.64 21.94 0.81 1.55

5. SynSin (w/ GT) 22.65 19.64 26.19 0.78 0.71 0.82 1.37 0.50 0.64 – – – 23.72 0.86 1.22

6. SynSin (sup. by GT) 21.59 20.32 22.46 0.72 0.71 0.71 1.60 0.43 0.92 – – – 22.54 0.80 1.55

7. Im2Im 15.87 16.20 15.97 0.53 0.60 0.48 2.99 0.58 2.05 17.054.78 0.560.18 2.191.22 17.42 0.66 2.29

8. Vox w/ UNet 18.52 17.85 19.05 0.57 0.57 0.57 2.98 0.77 1.96 17.312.63 0.530.15 2.300.40 18.69 0.71 2.68

9. Vox w/ ours 20.62 19.64 21.22 0.70 0.69 0.68 1.97 0.47 1.19 21.884.39 0.710.15 1.300.55 19.77 0.75 2.24

Table 1: Results on Matterport3D [4], RealEstate10K [74], and Replica [58]. ↑ denotes higher is better, ↓ lower is better.

XXY Y denotes std dev. Y Y . The ablations demonstrate the utility of each aspect of our model. We outperform all baselines

for both datasets and are nearly as good as a model supervised with depth (SynSin (sup. by GT)). We also perform best when

considering regions visible (Vis) and not visible (InVis) in the input view.

with a change in angle of > 5◦ and a change in position of

greater than 0.15 if possible (see [74] for a discussion on

metric scale). To report results, we randomly generate a set

of 2000 pairs of images from the test set.

Metrics. Determining the similarity of images in a manner

correlated with human judgement is challenging [72]. We

report multiple metrics to obtain a more robust estimate of

the relative quality of images. We report the PSNR, SSIM,

and perceptual similarity of the images generated by the

different models. Perceptual similarity has been recently

demonstrated to be an effective method for comparing the

similarity of images [72]. Finally, we validate that these

metrics do indeed correlate with human judgement by per-

forming a user study on Amazon Mechanical Turk (AMT).

4.2. Baselines

We first abate the need for a soft differentiable renderer

by comparing to variants with a small footprint, hard

z-buffering, and that directly project RGB values. These

models use the same setup, training schedule, and sequence

of input images/viewpoints as SynSin.

SynSin (small ft): We set K = 128 and r = 0.5 in our

model to investigate the utility of a large footprint.

SynSin (hard z): We set K = 1 and r = 4 in our model

to investigate the utility of the soft z-buffer.

SynSin (rgb): We project RGB values not features.

SynSin does not assume ground-truth depth at test time;

the depth predictor is trained end-to-end for the given task.

We investigate the impact of ground-truth (GT) depth by

reporting two variants of our model. These models act as

upper bounds and can only be trained on Matterport3D (not

RealEstate10K), as they use true depth information.

SynSin (w/ GT): The true depth is used as D.

SynSin (sup. by GT): D is supervised by the true depth. (In

all other cases SynSin’s D is learned with no supervision).

We evaluate our 3D representation by comparing to a

method that uses no 3D and one that uses voxels. As no

methods exist for the challenging datasets we consider,

we re-implement the baselines for a fair comparison.

The baselines use the same setup, training schedule, and

sequence of input images/viewpoints as SynSin.

Im2Im: This baseline evaluates an image-to-image

method; we re-implement [75]. [75] only considered a set

of discretised rotations about the azimuth and a smaller

set of rotations in elevation. However, the changes in

viewpoint in our datasets arise from rotating continuously

in any direction and translating in 3D. We modify their

method to allow for these more complex transformations.

Vox: This baseline swaps our implicit 3D representation

for a voxel based representation. The model is based on

that of [54]. However, [54] trains one model per object,

so their model effectively learns to interpolate between the

>100 training views unlike our model, which extrapolates

to new real-world test scenes given a single input view.

We consider two variants: Vox w/ UNet uses the UNet

encoder/decoder of [54] whereas Vox w/ ours uses a similar

ResNet encoder/decoder setup to SynSin. This comparison

evaluates our 3D approach as opposed to a voxel based one

as well as whether our encoder/decoder setup is preferable.

Finally, we compare SynSin to existing pipelines that

perform view synthesis. These systems make different

assumptions and follow different approaches. This compar-

ison validates our use of a learned end-to-end system.

StereoMag [74]: This system takes two images as input

at test time. Assuming two input views simplifies the

problem of 3D understanding compared to our work, which

estimates 3D from a single view.

3D View: This system trains a single-image depth predictor

on images with ground-truth depth (e.g. MegaDepth [33]).

Predicted depths are used to convert the input image to

a textured 3D mesh, which is extended in space near

occlusion boundaries using isotropic colour diffusion [22].

Finally the mesh is rendered from the target view. The

approach is similar to 3D Photos [37].

7472



System comparison on RealEstate10K [74]

PSNR ↑ SSIM ↑ Perc Sim ↓

SynSin 22.314.97 0.740.16 1.180.64

3DView 21.888.43 0.660.22 1.521.03
StereoMag [74] 25.349.48 0.820.13 1.190.77

Table 2: SynSin performs better than a

system trained with GT depth (3DView)

and approaches the performance of [74],

which uses 2 input views at test time.

Generalisation to higher res.

PSNR ↑ SSIM ↑ Perc Sim ↓

SynSin 22.066.30 0.720.18 1.000.65

Vox w/ ours 18.822.52 0.610.14 2.470.36

Table 3: Results when applying

models trained on 256 × 256 images

to 512× 512 images.

AMT User Study

Ours Vox w/ ours Neither

E-O 68.7 31.3 –

E-O-N 55.6 27.3 17.2

Table 4: % of videos chosen

as most realistic. In E-O, users

choose the better method; in E-O-

N, users can say neither is better.

Figure 5: System comparisons on RealEstate10K, illustrat-

ing failure cases. Note StereoMag [74] uses two input im-

ages (second is shown as an inset). Unlike [74] we inpaint

missing regions (bottom row); [74] fails to model the left re-

gion and cannot inpaint the missing region. 3DView uses a

model pretrained for depth, causing their system to produce

inaccurate results in some cases (e.g. the bed in the top row).

4.3. Comparisons with other methods

Results on Matterport3D and RealEstate10K. We train

our models, ablations, and baselines on these datasets.

To better analyse the results, we compare models on

how well they understand the 3D scene structure and the

scene semantics (discussed in Section 1). To achieve this,

we report metrics on the final prediction (Both) but also on

the regions of the target image that are visible (Vis) and not

visible (InVis) in the input image. (Vis) evaluates the qual-

ity of the learned 3D scene structure, as it can be largely

solved by accurate depth prediction. (InVis) evaluates the

quality of a model’s understanding of scene semantics; it

requires a holistic understanding of semantic and geometric

properties to reasonably in-paint missing regions. In order

to determine the (Vis) and (InVis) regions, we use the GT

depth in the input view to obtain a binary mask of which

pixels are visible in the target image. This is only possible

on Matterport3D (RealEstate10K does not have GT depth).

Table 1 and Fig. 4 report results on Matterport3D and

RealEstate10K. On both datasets, we perform better than

the baselines on all metrics and under all conditions,

demonstrating the utility of both our 3D representation and

our inpainting module. These results demonstrate that the

differentiable renderer is important for training the depth

model (rows 1-4). Our encoder decoder setup is shown to be

important, as it improves the baseline’s performance signif-

icantly (rows 8-9). Qualitatively, our model preserves fine

detail and predicts 3D structure better than the baselines.

System comparison on RealEstate10K. We compare our

system to the 3DView and StereoMag [74] in Table 2 and

Fig. 5. Our model performs better than 3DView despite

their method having been trained with hundreds of thou-

sands of depth images. We hypothesise that this gap in

performance is due to the 3DView’s depth prediction not

generalising well; their dataset consists of images of mostly

close ups of objects whereas ours consists of scenes taken

inside or outdoors. This baseline demonstrates that using an

explicit 3D representation is problematic when the test do-

main differs from the training domain, as the depth predic-

tor cannot generalise. Finally, our method of inpainting is

better than that of 3DView, which produces a blurry result.

[74] does not inpaint unseen regions in the generated image.

Comparison with upper bounds. We compare our model

to SynSin (w/ GT) and SynSin (sup. with GT) in Table 1.

These models either use GT depth or are supervised by GT

depth; they are upper bounds of performance. While there

is a performance gap between SynSin and SynSin (w/ GT)

under the (Vis) condition, this gap shrinks for the (InVis)

condition. Interestingly, SynSin trained with no depth su-

pervision performs nearly as well as SynSin (sup. with GT)

under both the (Vis) and (InVis) conditions; our model also

generalises better to the Replica dataset. This experiment

demonstrates that having true depth during training does

not necessarily give a large boost in a downstream task

and could hurt generalisation performance. It validates our

decision to use an end-to-end system (as opposed to using

depth estimated from a self-supervised method).

Generalisation to Replica. Given the models trained on

Matterport3D, we evaluate generalisation performance

(with no further fine-tuning) on Replica in Table 1. Replica

contains additional types of rooms (e.g. office and hotel

rooms) and is higher quality than Matterport (it has fewer

geometric and lighting artefacts and more complex tex-

tures). SynSin generalises better to this unseen dataset;

qualitatively, SynSin seems to introduce fewer artefacts

(Fig. 6).

7473



Figure 6: Comparison of SynSin against the baseline, Vox

w/ ours, at generalising to higher res 512× 512 images and

Replica [58]. Ours generalises better with fewer artefacts.

4.4. Generalisation to higher resolution images

We also evaluate generalisation to higher image reso-

lutions in Table 3 and Fig. 6. SynSin can be applied to

higher resolution images without any further training. The

ability to generalise to higher resolutions is due to the

flexible 3D representation in our approach: the networks

are fully convolutional and the 3D point cloud can be

sampled at any resolution to maintain the resolution of

the features. As a result, it is straightforward at test time

to apply a network trained on a smaller image size (e.g.

256 × 256) to one of a different size (e.g. 512 × 512).

Unlike our approach, the voxel baseline suffers a dramatic

performance drop when applied to a higher resolution

image. This drop in performance is presumably a result of

the heavy downsampling and imprecision resulting from

representing the world as a coarse voxel grid.

4.5. Depth predictions

We evaluate the quality of the learned 3D representation

qualitatively in Fig. 7 for SynSin trained on RealEstate10K.

We note that the accuracy of the depth prediction only

matters in so far as it improves results on the view synthesis

task. However, we hypothesise that the quality of the

generated images and predicted depth maps are correlated,

so looking at the quality of the depth maps should give

some insight into the quality of the learned models. The

depth map predicted by our method is higher resolution

and more realistic than the depth map predicted by the

baseline methods. Additionally, our differentiable point

cloud renderer appears to improve the depth quality over

using a hard z-buffer or a smaller footprint. However, we

note that small objects and finer details are not accurately

recreated. This is probably because these structures have a

limited impact on the generated images.

Figure 7: Recovered depth predictions for both our method

and the baselines. The baselines predict a less accurate

and coarser depth. Using a smaller radius or hard z-buffer

produces qualitatively similar or worse depth maps.

4.6. User study: Animating still images

Finally, we task SynSin to synthesise images along a

trajectory. Given an initial input frame from a video in

RealEstate10K, SynSin generates images at the camera po-

sition of the 30 subsequent frames. While changes are hard

to see in a figure (e.g. Fig. 1), the supplementary videos

clearly show smooth motion and 3D effects. These demon-

strate that SynSin can generate reasonable videos despite

being trained purely on images. To evaluate the quality of

the generated videos, we perform an AMT user study.

We randomly choose 100 trajectories and generate

videos using SynSin and the Vox w/ ours baseline. Five

users are asked to rate which method’s video is most

realistic. For each video, we take the majority vote to

determine the best video. We report the percentage of times

the users choose a given method in Table 4.

Either-or setup (E-O): Users rate whether the baseline or

our generated video is more realistic.

Either-or-neither setup (E-O-N): Users rate whether the

baseline or our generated video is more realistic or whether

they are equally realistic/unrealistic (neither). When taking

the majority vote, if their is no majority, neither video is

said to be more / less realistic

In both cases, users prefer our method, presumably be-

cause our videos have smoother motion and fewer artefacts.

5. Conclusion

We introduced SynSin, an end-to-end model for per-

forming single image view synthesis. At the heart of our

system are two key components: first a differentiable neural

point cloud renderer, and second a generative refinement

module. We verified that our approach can be learned

end-to-end on multiple realistic datasets, generalises to

unseen scenes, can be applied directly to higher image

resolutions, and can be used to generate reasonable videos

along a given trajectory. While we have introduced SynSin

in the context of view synthesis, we note that using a

neural point cloud renderer within a generative model has

applications in other tasks.

7474








