This CVPR 2020 paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;
the final published version of the proceedings is available on IEEE Xplore.

SynSin: End-to-end View Synthesis from a Single Image

Olivia Wiles!* Georgia Gkioxari?

Richard Szeliski?

Justin Johnson®*

"University of Oxford 2Facebook Al Research *Facebook “University of Michigan

Learned 3D point cloud

Input Image
with trajectory overlaid

Generated views along the trajectory

Learned 3D point cloud
with trajectory overlaid

Input Image Generated views along the trajectory

Figure 1: End-to-end view synthesis. Given a single RGB image (red), SynSin generates images of the scene at new
viewpoints (blue). SynSin predicts a 3D point cloud, which is projected onto new views using our differentiable renderer; the
rendered point cloud is passed to a GAN to synthesise the output image. SynSin is trained end-to-end, without 3D supervision.

Abstract

View synthesis allows for the generation of new views of
a scene given one or more images. This is challenging; it
requires comprehensively understanding the 3D scene from
images. As a result, current methods typically use multiple
images, train on ground-truth depth, or are limited to syn-
thetic data. We propose a novel end-to-end model for this
task using a single image at test time; it is trained on real
images without any ground-truth 3D information. To this
end, we introduce a novel differentiable point cloud ren-
derer that is used to transform a latent 3D point cloud of
features into the target view. The projected features are de-
coded by our refinement network to inpaint missing regions
and generate a realistic output image. The 3D component
inside of our generative model allows for interpretable ma-
nipulation of the latent feature space at test time, e.g. we can
animate trajectories from a single image. Additionally, we
can generate high resolution images and generalise to other
input resolutions. We outperform baselines and prior work
on the Matterport, Replica, and RealEstatel0K datasets.

1. Introduction

Given an image of a scene, as in Fig. 1 (top-left), what
would one see when turning left or walking forward? We

Project page: www.robots.ox.ac.uk/~ow/synsin.html.
*Work done during an internship at Facebook Al Research.

can reason that the window and the wall will extend to the
left and more chairs will appear to the right. The task of
novel view synthesis addresses these questions: given a
view of a scene, the aim is to generate images of the scene
from new viewpoints. This task has wide applications in
image editing, animating still photographs or viewing RGB
images in 3D. To unlock these applications for any input
image, our goal is to perform view synthesis in complex,
real-world scenes using only a single input image.

View synthesis is challenging, as it requires compre-
hensive scene understanding. Specifically, successful view
synthesis requires understanding both the 3D structure and
the semantics of the input image. Modelling 3D structure
is important for capturing the relative motion of visible
objects under a view transform. For example in Fig. 1
(bottom-left), the sink is closer than the shower and thus
shifts more as we change viewpoints. Understanding se-
mantics is necessary for synthesising plausible completions
of partially visible objects, e.g. the chair in Fig. 1 (top-left).

One way to overcome these challenges is to relax
the single-image constraint and use multiple views to
reconstruct 3D scene geometry [12, 15, 51, 76]. This also
simplifies semantic modelling, as fewer positions will be
occluded from all views. Recent methods [56, 68, 74] can
be extremely effective even for complex real-world scenes.
However the assumption of multiple views severely limits
their applicability, since the vast majority of images are not
accompanied by views from other angles.

7467

Another approach is to train a convolutional network to
estimate depth from images [13, 33], enabling single-image
view synthesis in realistic scenes [40]. Unfortunately this
approach requires a training dataset of images with ground-
truth depth. Worse, depth predictors may not generalise
beyond the scene types on which they are trained (e.g. a net-
work trained on indoor scenes will not work on outdoor im-
ages) so this approach can only perform view synthesis on
scene types for which ground-truth depth can be obtained.

To overcome these shortcomings, there has been grow-
ing interest in view synthesis methods that do not use any
3D information during training. Instead, an end-to-end
generative model with 3D-aware intermediate representa-
tions can be trained from image supervision alone. Existing
methods have shown promise on synthetic scenes of single
objects [31, 54, 55, 60, 67], but have been unable to scale
to complex real-world scenes. In particular, several recent
methods represent 3D structure using dense voxel grids
of latent features [36, 54]. With voxels, the fidelity of 3D
information that can be represented is tied to the voxel
dimensions, thus limiting the output resolution. On the
other hand, point clouds are more flexible, generalise
naturally to varying resolutions and are more efficient.

In this paper we introduce SynSin, a model for view
synthesis from a single image in complex real-world
scenes. SynSin is an end-to-end model trained without
any ground-truth 3D supervision. It represents 3D scene
structure using a high-resolution point cloud of learned
features, predicted from the input image using a pair of
convolutional networks. To generate new views from the
point cloud, we render it from the target view using a high-
performance differentiable point cloud renderer. SynSin
models scene semantics by building upon recent advances
in generative models [3], and training adversarially against
learned discriminators. Since all model components are
differentiable, SynSin is trained end-to-end using image
pairs and their relative camera poses; at test-time it receives
only a single image and a target viewpoint.

We evaluate our approach on three complex real-
world datasets: Matterport [4], RealEstatel0K [74], and
Replica [58]. All datasets include large angle changes
and translations, increasing the difficulty of the task. We
demonstrate that our approach generates high-quality
images and outperforms baseline methods that use voxel-
based 3D representations. We also show that our trained
models can generalise at test-time to high-resolution output
images, and even to new datasets with novel scene types.

2. Related work

Research into new view synthesis has a long history in
computer vision. These works differ based on whether they
use multiple images or a single image at test time and on
whether they require annotated 3D or semantic information.

View synthesis from multiple images. If multiple images
of a scene can be obtained, inferred 3D geometry can be
used to reconstruct the scene and then generate new views.
Traditionally, this was done using depth maps [5, 47] or
multi-view geometry [11, 12, 15, 30, 51, 76].

In the learning era, DNNs can be used to learn depth.

[1,9, 23, 36, 38, 41] use a DNN to improve view synthesis
from a set of noisy, incomplete, or inconsistent depth
maps. Given two or more images of a scene within a small
baseline, [16, 56, 57, 63, 68, 74] show impressive results at
synthesising views within this narrow baseline. [35, 42, 54]
learn an implicit voxel representation of one object given
many training views and generate new views of that object
at test time. [14] use no implicit 3D representation. Unlike
these methods, we assume only one image at test time.
View synthesis from a single image using ground-truth
depth or semantics. A second vein of work assumes a
large dataset of images with corresponding ground-truth 3D
and semantic information to train their 3D representation
[40, 52, 62]. These methods are reliant on a large scale
benchmark and corresponding annotation effort. The depth
may be obtained using a depth or lidar camera [17, 28, 53]
or SfM [33]; however, this is time-consuming and challeng-
ing, especially for outdoor scenes, often necessitating the
use of synthetic environments. We aim to make predictions
anywhere, e.g. the wood scene in Fig. 5, and in realistic
settings, without 3D information or semantic labels.
View synthesis from a single image. DNNs can be used
to learn view synthesis in an end-to-end fashion. One such
line of work synthesises new views using purely image to
image transformations [7, 31, 43, 59, 60, 75]. Later work
performs 3D operations directly on the learned embedding
[67] or interprets the latent space as an implicit surface [55].
However, these works consider synthetic datasets with a
single object per image and train one model per object class.
Most similar to ours is the recent work of [8]. However,
they do not consider larger movements that lead to signifi-
cant holes and dis-occlusions in the target image. They also
consider a more constrained setup; they consider synthetic
object classes and mostly forward motion in KITTT [17],
whereas we use a variety of indoor and outdoor scenes.

Many works explore using a DNN to predict 3D object
shapes [18, 20, 24, 26, 64, 69] or the depth of a scene given
an image [6, 13, 33, 73]. These works focus on the quality
of the 3D predictions as opposed to the view-synthesis task.
Generative models. We build on recent advances in
generative models to produce high-quality images with
DNNss [3, 19, 27, 39, 44]. In [3, 27], moving between the la-
tent codes of different instances of an object class seemingly
interpolates pose, but explicitly modifying pose is hard to
control and evaluate. [39] allows for explicit pose control
but not from a given image; they also use a voxel represen-
tation, which we find to be computationally limiting.

7468

v

Inputs
Change in
poseT

Input Image /

Projection step: using T and estimated Point Cloud P

Losses

il BY T

Ig GT

Figure 2: Our end-to-end system. The system takes as input an image I of a scene and change in pose T. The spatial
feature predictor (f) learns a set of features F' (visualised by projecting features using PCA to RGB) and the depth regressor
(d) a depth map D. F' are projected into 3D (the diagram shows RGB for clarity) to give a point cloud P of features. P is
transformed according to T and rendered. The rendered features F are passed through the refinement network (g) to generate
the final image I. I should match the target image, which we enforce using a set of discriminators and photometric losses.

3. Method

In this section, we introduce SynSin (Fig. 2) and in
particular how we overcome the two main challenges of
representing 3D scene structure and scene semantics. To
represent the 3D scene structure, we project the image
into a latent feature space which is in turn transformed
using a differentiable point cloud renderer. This renderer
injects a 3D prior into the network, as the predicted 3D
structure must obey geometric principles. To satisfy the
scene semantics, we frame the entire end-to-end system
as a GAN and build on architectural innovations of recent
state-of-the-art generative models.

SynSin takes an input image [and relative pose T. The
input image is embedded to a feature space F' via a spatial
feature predictor (f), and a depth map D via a depth regres-
sor (d). From F and D, a point cloud P is created which is
rendered into the new view (neural point cloud renderer).
The refinement network (g) refines the rendered features to
give the final generated image /. At training time, we en-
force that Iz should match the target image (discriminator).

3.1. Spatial feature and depth networks

Two networks, f and d, are responsible for mapping
the raw input image into a higher dimensional feature
map and a depth map, respectively. The spatial feature
network predicts feature maps at the same resolution as
the original image. These feature maps should represent
scene semantics, ie. a higher-level representation than
simply RGB colours. The depth network estimates the
3D structure of the input image at the same resolution.
The depth does not have to be (nor would we expect it to
be) perfectly accurate; however, it is explicitly learned in
order to perform the task. The design for f and d follows
standard architectures built for the two tasks respectively:
Spatial feature network f. We build on the BigGAN
architecture [3] and use 8 ResNet blocks that maintain
image resolution; the final block predicts a 64-dimensional
feature for each pixel of the input image.

Depth network d. We use a UNet [48] with 8 downsam-
pling and upsampling layers to give a final prediction of the
same spatial resolution as the input. This is followed by a
sigmoid layer and a renormalisation step so the predicted
depths fall within the per-dataset min and max values.
Please refer to the supplement for the precise details.

3.2. Neural point cloud renderer

We combine the spatial features F' and predicted depths
D to give a 3D point cloud of feature vectors P. Given
the input view transform T, we want to view this point
cloud at the target viewpoint. This requires rendering the
point cloud. Renderers are used extensively in graphics, as
reviewed in [29, 49], but they usually focus on forward pro-
jection. Our 3D renderer is a component of an end-to-end
system, which is jointly optimised, and so needs to allow for
gradient propagation; we want to train for depth prediction
without any 3D supervision but only with a loss on the final
rendered image. Additionally, unlike traditional rendering
pipelines, we are not rendering RGB colours but features.

Limitations of a naive renderer. A naive renderer projects
3D points p; to one pixel or a small region — the footprint —
in the new view. Points are sorted in depth using a z-buffer.
For all points in the new view, the nearest point in depth
(using the z-buffer) is chosen to colour that point. A non-
differentiable renderer does not provide gradients with re-
spect to the point cloud positions (needed to train our depth
predictor) nor the feature vectors (needed to train our spatial
feature network). Simply making the operations of a naive
renderer differentiable is problematic for two reasons (il-
lustrated in Fig. 3). (1) Small neighbourhoods: each point
projects to only one or a few pixels in the rendered view. In
this case, there are only a few gradients for each point in the
zy-plane of the rendered view; this drawback of local gradi-
ents is discussed in [25] in the context of bilinear samplers.
(2) The hard z-buffer: each rendered pixel is only affected
by the nearest point in the z-buffer (e.g. if a new pixel be-
comes closer in depth, the output will suddenly change).

7469

! [] []
 Splatofp, r=4 ! T T
Pic | [TTTTTIITTT TTTTTITIIT]
JENEREIREEEEE
Varying influence i B

(a) Terminology

i (b) Naive forward pass (c) Our forward pass

o~ No grad

Z-buffer & Gradien.ts for
° each point
TTTTTTTTTT TTTTTTTTTTT o
Splatted Pts TTITITITITT [TITITITTTT Gradlentsfor
o each location
compositing U T | Gradient at x;

i (d) Naive backward pass (¢) Our backward pass

Figure 3: Comparison of our rendering pipeline to a naive version. Given a set of points ordered in a z-buffer, our renderer
projects points to a region of radius 7 using a-compositing, not just the nearest point. When back-propagating through our
renderer, gradients flow not just to the nearest point, but to all points in the z-buffer. (For simplicity we show 1D projections.)

Our solution. We propose a neural point cloud renderer in
order to solve the prior two problems by softening the hard
decisions, as in Fig. 3. This is inspired by [34], which intro-
duces a differentiable renderer for meshes by similarly soft-
ening the hard rasterisation decisions and [77] which ren-
derers point clouds by splatting points to a region and accu-
mulating. First, to solve the issue of small neighbourhoods,
we splat 3D points to a disk of varying influence controlled
by hyperparameters r and M. Second, to solve the issue of
the hard z-buffer, we accumulate the effects of the K nearest
points, not just the nearest point, using a hyperparameter .

Our renderer first projects P onto a 2D grid under the
given transformation T. A 3D point p; is projected and
splatted to a region with centre p;_ and radius r. The
influence of the 3D point p; on a pixel I, is proportional to
the Euclidean distance da (-, -) from the centre of the region:

/\/'(pi,lzy) =0 if d2(pic>la:y) >r

d2 (pic ’ l£y)

N(pialwy) =1- M

otherwise.
Though A is not differentiable, we can approximate
derivatives using the subderivative. r and M control the
spread and fall-off of the influence of a 3D point.

The projected points are then accumulated in a z-buffer;
they are sorted according to their distance d; from the new
camera and only the K nearest points kept for each pixel
in the new view. The sorted points are accumulated using
alpha over-compositing (where -y is a hyperparameter):

pimﬂn, = N(pZ7 lmn) (1)

_ K i—1

Fpn =300, B [T 03,.), @)
i=1 j=1

where F is the projected feature map in the new view and
F' in the original view. 7 controls the blending; if v = 0,
this is hard z-buffering. This setup is illustrated in Fig. 3.

Implementation. Our renderer must be high-performance,
since we process batches of high-resolution point clouds
during training. We implement our renderer using a
sequence of custom CUDA kernels, building upon work on

high-performance triangle rasterisation with CUDA [32].
We use a two-stage approach: in the first stage we break
the output image into tiles, and determine the set of points
whose footprint intersects each tile. In the second stage, we
determine the K nearest points for each pixel in the output
image, sorting points in depth using per-pixel priority
queues in shared memory to reduce global memory traffic.
Other approaches. This method is related to the point
cloud rasterisers of [1, 24, 70]. However, our renderer is a
simpler than [70] and we apply it in an end-to-end frame-
work. While [1] also renders point clouds of features, they
only back-propagate to the feature vectors, not the 3D posi-
tions. [24] stores the predicted points in a voxel grid before
performing the projection step; this limits the resolution.
Performance. On a single V100 GPU, rendering a batch
of six point clouds with 5122 = 262,144 points each to a
batch of six images of size 256 x 256 takes 36ms for the
forward pass and 5Sms for the backward pass. In contrast,
converting the same point cloud to a 256 voxel grid using
the implementation from [24] takes ~ 1000ms for the
forward pass and ~ 2000ms for the backward pass.

3.3. Refinement module and discriminator

Even if the features are projected accurately, regions
not visible in the input view will be empty in the target
view. The refinement module should inpaint [2, 10] these
missing regions in a semantically meaningful (e.g. missing
portions of a couch should be filled in with similar texture)
and geometrically accurate (e.g. straight lines should
continue to be straight) manner. To solve this task, we take
inspiration from recent generative models [3, 27, 44].

Deep networks have been previously applied to inpaint-
ing [46, 61, 66]. In a typical inpainting setup, we know
a-priori which pixels are correct and which need to be
synthesised. In our case, the refinement network should
perform two tasks. First, it should inpaint regions with no
projected features, e.g. regions on the image boundary or
dis-occluded regions. The refinement module can discover
these regions, as the features have values near zero. Second,
the refinement module should correct local errors (e.g.
noisy regions resulting from noisy depth).

7470

1 P

| o \ S
Input Image Target Image Vox w/ ours

Vox w/ UNet

SynSin

Figure 4: Qualitative results on RealEstate for ours and baseline methods. Given the input view and the camera parameters,
the methods are tasked to produce the target image. The red squares denote interesting differences between the methods. In
the upper row, our model better recreates the true 3D; in the bottom row, our model is better able to preserve detail.

To build the refinement network, we use 8 ResNet [21]
blocks, taking inspiration from [3]. Unlike [3], we aim to
generate a new image conditioned on an input view not a
random vector. Consequently, we find that it is important
to maintain the image resolution as much as possible to
obtain high quality results. We modify their ResNet block
to create a downsampling block. The downsampling block
is used to decrease the image resolution by two sizes before
upsampling to the original image resolution. To model the
ambiguity in the inpainting task, we use batch normalisa-
tion injected with noise [3]. We additionally apply spectral
normalisation following each convolutional layer [71].

The GAN architecture and objective used is that of [65].
We use 2 multi-layer discriminators at a lower and higher
resolution and a feature matching loss on the discriminator.

3.4. Training

Training objective. The network is trained with an
L1 loss, content loss and discriminator loss between
the generated and target image. The total loss is then
L =MAganLaan + 1Ly + AL

Training details. The models are trained with the Adam
optimiser using a 0.01 learning rate for the discriminator,
0.0001 for the generator and momentum parameters (0,
0.9). Agan =1, . =10, A\;1 = 1. v = 1, r = 4 pixels,
K =128, W = H = 256. The models are trained for 50K
iterations. We implement our models in PyTorch [45]; they
take 1-2 days to train on 3 Tesla V100 GPUs.

4. Experiments

We evaluate our approach on the task of view synthesis
using novel real-word scenes. We validate our design
choices in Section 4.3 by ablating our approach and
comparing against competing end-to-end view synthesis
pipelines. We also compare to other systems and find that

our model performs better than one based on a trained depth
predictor, which fails to generalise well to the new domain.
We additionally evaluate SynSin’s generalisation perfor-
mance to novel domains (Section 4.3) as well as higher
image resolutions (Section 4.4). Finally, we use SynSin to
synthesise trajectories from an initial image in Section 4.6,
demonstrating that it can be used for a walk-through
application. Additional results are given in the supplement.

4.1. Experimental setup

Datasets. We focus on using realistic data of indoor and
outdoor environments as opposed to synthetic objects.

The first framework we use is Habitat [50], which allows
for testing in a variety of scanned indoor scenes. The Habi-
tat framework can efficiently generate image and viewpoint
pairs for an input scene. We use two sources of indoor
scenes: Matterport3D [4], consisting of reconstructions of
homes, and Replica [58], which consists of higher fidelity
scans of indoor scenes. The Matterport3D dataset is divided
at the scene level into train/val/test which contain 61/11/18
scenes. The Replica dataset is only used at evaluation time
to test generalisability. Pairs of images are generated by
randomly selecting a viewpoint in a scene and then ran-
domly modifying the viewing angle in a range of +20° in
each Euclidean direction and the position within +0.32m.

The second dataset we use is RealEstate 10K [74], which
consists of videos of walkthroughs of properties and the cor-
responding camera parameters (intrinsic and extrinsic) ob-
tained using SfM. The dataset contains both indoor and out-
door scenes. It is pre split into a disjoint set of train and test
scenes; we subdivide train into a training and validation set
to give approximately 57K/14K/7K scenes in train/val/test.
The scenes in the test set are unseen. We sample viewpoints
by selecting a reference video frame and then selecting a
second video frame a maximum of 30 frames apart. In
order to sample more challenging frames, we choose pairs

7471

Matterport [4] RealEstate10K [74] Replica [58]
PSNR 1 SSIM 1 Perc Sim | PSNRT SSIMT PercSim| PSNR?T SSIM?T PercSim]
Both InVis Vis Both InVis Vis Both InVis Vis
1. SynSin (small ft) 21.14 20.19 2184 071 070 069 1.68 045 098 21.10548 0.73¢.14 1.340.55 22.36 0.80 1.64
2. SynSin (hard z) 21.08 2023 21.70 0.70 0.70 0.67 1.82 044 1.11 2140406 0.700.15 1.450.61 20.70 0.76 1.95
3. SynSin (rgb) 20.64 19.87 2121 0.67 0.69 0.65 206 049 127 209235 0.68014 1.670.51 20.44 0.75 2.03
4. SynSin 2091 19.80 21.62 0.71 0.71 0.70 1.68 0.43 099 2231497 0.74).16 1.180.64 21.94 0.81 1.55
5. SynSin (w/ GT) 22.65 19.64 26.19 0.78 0.71 0.82 137 050 0.64 - - - 23.72 0.86 1.22
6. SynSin (sup. by GT) 21.59 2032 2246 072 071 071 1.60 043 092 - - - 22.54 0.80 1.55
7. Im2Im 15.87 1620 1597 0.53 0.60 048 299 058 2.05 17.05478 0.56¢.1s 2.191 .99 17.42 0.66 2.29
8. Vox w/ UNet 1852 17.85 19.05 057 057 057 298 077 196 1731263 0.53015 2.300.40 18.69 0.71 2.68
9. Vox w/ ours 20.62 19.64 2122 0.70 0.69 0.68 197 047 1.19 2188439 0.71p.15 1.300 55 19.77 0.75 2.24

Table 1: Results on Matterport3D [4], RealEstate 10K [74], and Replica [58]. 1 denotes higher is better, | lower is better.
X Xyv denotes std dev. YY. The ablations demonstrate the utility of each aspect of our model. We outperform all baselines
for both datasets and are nearly as good as a model supervised with depth (SynSin (sup. by GT)). We also perform best when
considering regions visible (Vis) and not visible (InVis) in the input view.

with a change in angle of > 5° and a change in position of
greater than 0.15 if possible (see [74] for a discussion on
metric scale). To report results, we randomly generate a set
of 2000 pairs of images from the test set.

Metrics. Determining the similarity of images in a manner
correlated with human judgement is challenging [72]. We
report multiple metrics to obtain a more robust estimate of
the relative quality of images. We report the PSNR, SSIM,
and perceptual similarity of the images generated by the
different models. Perceptual similarity has been recently
demonstrated to be an effective method for comparing the
similarity of images [72]. Finally, we validate that these
metrics do indeed correlate with human judgement by per-
forming a user study on Amazon Mechanical Turk (AMT).

4.2. Baselines

We first abate the need for a soft differentiable renderer
by comparing to variants with a small footprint, hard
z-buffering, and that directly project RGB values. These
models use the same setup, training schedule, and sequence
of input images/viewpoints as SynSin.

SynSin (small ft): We set K = 128 and r = 0.5 in our
model to investigate the utility of a large footprint.

SynSin (hard z): We set K = 1 and » = 4 in our model
to investigate the utility of the soft z-buffer.

SynSin (rgb): We project RGB values not features.

SynSin does not assume ground-truth depth at test time;
the depth predictor is trained end-to-end for the given task.
We investigate the impact of ground-truth (GT) depth by
reporting two variants of our model. These models act as
upper bounds and can only be trained on Matterport3D (not
RealEstate10K), as they use true depth information.
SynSin (w/ GT): The true depth is used as D.

SynSin (sup. by GT): D is supervised by the true depth. (In
all other cases SynSin’s D is learned with no supervision).

We evaluate our 3D representation by comparing to a
method that uses no 3D and one that uses voxels. As no

methods exist for the challenging datasets we consider,
we re-implement the baselines for a fair comparison.
The baselines use the same setup, training schedule, and
sequence of input images/viewpoints as SynSin.
Im2Im: This baseline evaluates an image-to-image
method; we re-implement [75]. [75] only considered a set
of discretised rotations about the azimuth and a smaller
set of rotations in elevation. However, the changes in
viewpoint in our datasets arise from rotating continuously
in any direction and translating in 3D. We modify their
method to allow for these more complex transformations.
Vox: This baseline swaps our implicit 3D representation
for a voxel based representation. The model is based on
that of [54]. However, [54] trains one model per object,
so their model effectively learns to interpolate between the
>100 training views unlike our model, which extrapolates
to new real-world test scenes given a single input view.
We consider two variants: Vox w/ UNet uses the UNet
encoder/decoder of [54] whereas Vox w/ ours uses a similar
ResNet encoder/decoder setup to SynSin. This comparison
evaluates our 3D approach as opposed to a voxel based one
as well as whether our encoder/decoder setup is preferable.
Finally, we compare SynSin to existing pipelines that
perform view synthesis. These systems make different
assumptions and follow different approaches. This compar-
ison validates our use of a learned end-to-end system.
StereoMag [74]: This system takes two images as input
at test time. Assuming two input views simplifies the
problem of 3D understanding compared to our work, which
estimates 3D from a single view.
3D View: This system trains a single-image depth predictor
on images with ground-truth depth (e.g. MegaDepth [33]).
Predicted depths are used to convert the input image to
a textured 3D mesh, which is extended in space near
occlusion boundaries using isotropic colour diffusion [22].
Finally the mesh is rendered from the target view. The
approach is similar to 3D Photos [37].

7472

System comparison on RealEstatel10K [74]

PSNRT SSIM?t Perc Sim | Generalisation to higher res. AMT User Study
SynSin 2231407 074016 1.180.64 PSNR1T SSIM? Perc Sim | Ours ~ Vox w/ours Neither
3DView 21.88545 0.66020 1.521.03 SynSin 220665 072015 1.00065 E-O 68.7 313 -
StereoMag [74] 25.349.4s8 0.82¢13 1.199.77 Vox w/ours 18.82550 0.61¢.14 2.470.36 E-O-N 55.6 27.3 17.2

Table 2: SynSin performs better than a Table 3:
system trained with GT depth (3DView)
and approaches the performance of [74],

which uses 2 input views at test time.

Target Image SynSin 3D View StereoMag

Input Image

Figure 5: System comparisons on RealEstate10K, illustrat-
ing failure cases. Note StereoMag [74] uses two input im-
ages (second is shown as an inset). Unlike [74] we inpaint
missing regions (bottom row); [74] fails to model the left re-
gion and cannot inpaint the missing region. 3DView uses a
model pretrained for depth, causing their system to produce
inaccurate results in some cases (e.g. the bed in the top row).

4.3. Comparisons with other methods

Results on Matterport3D and RealEstate10K. We train
our models, ablations, and baselines on these datasets.

To better analyse the results, we compare models on
how well they understand the 3D scene structure and the
scene semantics (discussed in Section 1). To achieve this,
we report metrics on the final prediction (Both) but also on
the regions of the target image that are visible (Vis) and not
visible (InVis) in the input image. (Vis) evaluates the qual-
ity of the learned 3D scene structure, as it can be largely
solved by accurate depth prediction. (InVis) evaluates the
quality of a model’s understanding of scene semantics; it
requires a holistic understanding of semantic and geometric
properties to reasonably in-paint missing regions. In order
to determine the (Vis) and (InVis) regions, we use the GT
depth in the input view to obtain a binary mask of which
pixels are visible in the target image. This is only possible
on Matterport3D (RealEstate 10K does not have GT depth).

Table 1 and Fig. 4 report results on Matterport3D and
RealEstate10K. On both datasets, we perform better than
the baselines on all metrics and under all conditions,
demonstrating the utility of both our 3D representation and
our inpainting module. These results demonstrate that the
differentiable renderer is important for training the depth

Results when applying
models trained on 256 x 256 images
to 512 x 512 images.

Table 4: % of videos chosen
as most realistic. In E-O, users
choose the better method; in E-O-
N, users can say neither is better.

model (rows 1-4). Our encoder decoder setup is shown to be
important, as it improves the baseline’s performance signif-
icantly (rows 8-9). Qualitatively, our model preserves fine
detail and predicts 3D structure better than the baselines.

System comparison on RealEstatel0K. We compare our
system to the 3DView and StereoMag [74] in Table 2 and
Fig. 5. Our model performs better than 3DView despite
their method having been trained with hundreds of thou-
sands of depth images. We hypothesise that this gap in
performance is due to the 3DView’s depth prediction not
generalising well; their dataset consists of images of mostly
close ups of objects whereas ours consists of scenes taken
inside or outdoors. This baseline demonstrates that using an
explicit 3D representation is problematic when the test do-
main differs from the training domain, as the depth predic-
tor cannot generalise. Finally, our method of inpainting is
better than that of 3DView, which produces a blurry result.
[74] does not inpaint unseen regions in the generated image.

Comparison with upper bounds. We compare our model
to SynSin (w/ GT) and SynSin (sup. with GT) in Table 1.
These models either use GT depth or are supervised by GT
depth; they are upper bounds of performance. While there
is a performance gap between SynSin and SynSin (w/ GT)
under the (Vis) condition, this gap shrinks for the (InVis)
condition. Interestingly, SynSin trained with no depth su-
pervision performs nearly as well as SynSin (sup. with GT)
under both the (Vis) and (InVis) conditions; our model also
generalises better to the Replica dataset. This experiment
demonstrates that having true depth during training does
not necessarily give a large boost in a downstream task
and could hurt generalisation performance. It validates our
decision to use an end-to-end system (as opposed to using
depth estimated from a self-supervised method).

Generalisation to Replica. Given the models trained on
Matterport3D, we evaluate generalisation performance
(with no further fine-tuning) on Replica in Table 1. Replica
contains additional types of rooms (e.g. office and hotel
rooms) and is higher quality than Matterport (it has fewer
geometric and lighting artefacts and more complex tex-
tures). SynSin generalises better to this unseen dataset;
qualitatively, SynSin seems to introduce fewer artefacts
(Fig. 6).

7473

Figure 6: Comparison of SynSin against the baseline, Vox
w/ ours, at generalising to higher res 512 x 512 images and
Replica [58]. Ours generalises better with fewer artefacts.

4.4. Generalisation to higher resolution images

We also evaluate generalisation to higher image reso-
lutions in Table 3 and Fig. 6. SynSin can be applied to
higher resolution images without any further training. The
ability to generalise to higher resolutions is due to the
flexible 3D representation in our approach: the networks
are fully convolutional and the 3D point cloud can be
sampled at any resolution to maintain the resolution of
the features. As a result, it is straightforward at test time
to apply a network trained on a smaller image size (e.g.
256 x 256) to one of a different size (e.g. 512 x 512).
Unlike our approach, the voxel baseline suffers a dramatic
performance drop when applied to a higher resolution
image. This drop in performance is presumably a result of
the heavy downsampling and imprecision resulting from
representing the world as a coarse voxel grid.

4.5. Depth predictions

We evaluate the quality of the learned 3D representation
qualitatively in Fig. 7 for SynSin trained on RealEstate10K.
We note that the accuracy of the depth prediction only
matters in so far as it improves results on the view synthesis
task. However, we hypothesise that the quality of the
generated images and predicted depth maps are correlated,
so looking at the quality of the depth maps should give
some insight into the quality of the learned models. The
depth map predicted by our method is higher resolution
and more realistic than the depth map predicted by the
baseline methods. Additionally, our differentiable point
cloud renderer appears to improve the depth quality over
using a hard z-buffer or a smaller footprint. However, we
note that small objects and finer details are not accurately
recreated. This is probably because these structures have a
limited impact on the generated images.

Figure 7: Recovered depth predictions for both our method
and the baselines. The baselines predict a less accurate
and coarser depth. Using a smaller radius or hard z-buffer
produces qualitatively similar or worse depth maps.

4.6. User study: Animating still images

Finally, we task SynSin to synthesise images along a
trajectory. Given an initial input frame from a video in
RealEstate 10K, SynSin generates images at the camera po-
sition of the 30 subsequent frames. While changes are hard
to see in a figure (e.g. Fig. 1), the supplementary videos
clearly show smooth motion and 3D effects. These demon-
strate that SynSin can generate reasonable videos despite
being trained purely on images. To evaluate the quality of
the generated videos, we perform an AMT user study.

We randomly choose 100 trajectories and generate
videos using SynSin and the Vox w/ ours baseline. Five
users are asked to rate which method’s video is most
realistic. For each video, we take the majority vote to
determine the best video. We report the percentage of times
the users choose a given method in Table 4.

Either-or setup (E-O): Users rate whether the baseline or
our generated video is more realistic.

Either-or-neither setup (E-O-N): Users rate whether the
baseline or our generated video is more realistic or whether
they are equally realistic/unrealistic (neither). When taking
the majority vote, if their is no majority, neither video is
said to be more / less realistic

In both cases, users prefer our method, presumably be-
cause our videos have smoother motion and fewer artefacts.

5. Conclusion

We introduced SynSin, an end-to-end model for per-
forming single image view synthesis. At the heart of our
system are two key components: first a differentiable neural
point cloud renderer, and second a generative refinement
module. We verified that our approach can be learned
end-to-end on multiple realistic datasets, generalises to
unseen scenes, can be applied directly to higher image
resolutions, and can be used to generate reasonable videos
along a given trajectory. While we have introduced SynSin
in the context of view synthesis, we note that using a
neural point cloud renderer within a generative model has
applications in other tasks.

7474

