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Abstract

The occluding contour of a curved surface is an im-
portant source of information about its shape. How-
ever, recovering the shape of an object from triangu-
lation fails at occluding contours of smooth objects
because the contour generators are view dependent.
For three or more views, shape recovery is possible,
and several algorithms have recently been developed
for this purpose. Our approach uses a linear smoother
to optimally combine all of the measurements avail-
able at the contours (and other edges) in all of the
images. This allows us to extract a robust and dense
estimate of surface shape, and to integrate shape in-
formation from both surface markings and occluding
contours.

The problem of reconstructing a smooth surface from
its profiles (also known as extremal boundaries or occlud-
ing contours) has been explored for known planar motion
by Giblin and Weiss [3] and subsequently for more gen-
eral known motion by Vaillant (6] and Cipolla and Blake
[1]. These approaches require second derivatives of edge
point locations. Unfortunately, determining differential
quantities reliably in real images is difficult. Cipolla and
Blake use relative measurements in order to cancel some
of the error due to inadvertent camera rotation, and B-
snakes to smooth the contours in the image, which re-
quires the initialization of each contour to be tracked.

To overcome these limitations, we apply estimation
theory (Kalman filtering and smoothing) to make opti-
mal use of each measurement without computing differ-
ential quantities. In [5], we derive a linear set of equa-
tions between the unknown shape (surface point posi-
tions and radii of curvature) and the measurements. We
then develop a robust linear smoother [2] to compute sta-
tistically optimal current and past estimates from the set
of contours. Smoothing allows us to combine measure-
ments on both sides of each surface point.

Our technique produces a complete surface descrip-
tion, i.e., a network of linked 3D surface points, which
provides us with a much richer description than just a
set of 3D curves. Due to self-occlusion and occlusion
by other surfaces, some parts of the surface may never
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appear on the profile. Since the method presented here
also works for arbitrary surface markings and creases, a
larger part of the surface can be reconstructed than from
occluding contours of the smooth pieces alone.

The surface being reconstructed from a moving cam-
era can be parametrized in a natural way by two families
of curves [3, 1]: one family consists of the critical sets
(also known as contour generators or limbs) on the sur-
face; the other is tangent to the family of rays from the
camera focal points. The latter curves are called epipo-
lar curves. The problem is that any smooth surface re-
construction algorithm which is more than a first order
approximation requires at least three images and, that
in general, the three corresponding tangent rays will not
be coplanar. However, there are many cases when this
will be a good approximation. One such case is when
the camera trajectory is almost linear.

Given three or more edgels tracked with our technique,
we compute the location of the surface and its curvature
by fitting a circular arc to the lines defined by the view
directions at those edgels. In general, a space curve will
have a unique circle which is closest to the curve at any
given point. This is called the osculating circle, and the
plane of this circle is called the osculating plane. It is
easy to see that the epipolar plane is an estimate of the
osculating plane [1}, and the lines defined by the view
directions can be projected onto this plane.

The overall sequence of processing steps is the follow-
ing. Initially, we perform a batch fit to the first three
frames, using the last frame as the reference frame. Next,
we convert the local estimate into a global 3D position
and save it as part of our final surface model. Then, we
predict the 3D surface point and its radius onto the next
frame, i.e., into the frame defined by the next 2D edgel
found by the tracker. We repeat the above process so
long as a reliable track is maintained (i.e., the residuals
are within an acceptable range). If the track disappears
or a robust fit is not possible, we terminate the recursive
processing and wait until enough new measurements are
available to start a new batch fit.

The generalization of the Kalman filter to update pre-
vious estimates is called the linear smoother [2]. The
three commonly used types of smoothing are fized-
interval smoothing, fized-point smoothing, and fized-lag
smoothing [2]. For our contour-based shape recovery al-
gorithm, we have developed a new fixed-lag smoother,



Figure 1: Image from synthetic truncated ellipsoid sequence, reconstructed profile curves (oblique and top view) and

portion of meshed surface.

which fits in naturally with the batch and Kalman filter
approaches. OQur fixed-lag smoother begins by comput-
ing a centered batch fit to n > 3 frames. The surface
point is then predicted from frame i—1 to frame ¢ as with
the Kalman filter, and a new measurement from frame
i+ L, L := [n/2] is added to the predicted estimate. The
addition of measurements ahead of the current estimate
is straightforward using the projection equations for the
least-squares (batch) fitting algorithm.

To determine the performance of our shape recon-
struction algorithm, we generated a synthetic motion se-
quence of a truncated ellipsoid rotating about its z axis
(Figure ). The camera is oblique (rather than perpen-
dicular) to the rotation axis, so that the trajectories of
the pixels are not linear, and the reconstruction plane is
continuously varying over time.

When we run the edge images through our least-
squares fitter or Kalman filter/smoother, we obtain a
series of 3D curves. The curves corresponding to the
surface markings and ridges (where the ellipsoid is trun-
cated) should be stationary and have 0 radius, while the
curves corresponding to the occluding contour should
continuously sweep over the surface.

Figure 1 (middle two images) shows all of the 3D
curves overlayed in a single image. As we can see, the
3D surface is reconstructed quite well, except for parts
which do not appear in profile. These results were ob-
tained using the linear smoother with n = 7 window
size. The rightmost image show a portion of the surface
patch created by linking successive matched edgels along
their epipolar curves. Most points on the smooth portion
of the surface will be covered by two such meshes, since
their corresponding profiles will have been seen from two
different viewpoints (once as the point appears and once
as it disappears). We are currently developing an algo-
rithm to merge these meshes, along with the recovered
surface marking curves, into a single surface description.

We have also applied our algorithm to real image se-
quences [5] which were obtained by placing an object
on a rotating mechanized turntable whose edge has a

Gray code strip used for reading back the rotation angle
[4]. The camera motion parameters for these sequences
were obtained by first calibrating the camera intrinsic
parameters and extrinsic parameters to the turntable top
center, and then using the computed turntable rotation.
Our results indicate that the overall shape of the objects
is reconstructed quite well.

To summarize, this paper extends previous work on
both the reconstruction of smooth surfaces from profiles
and on the epipolar analysis on spatiotemporal surfaces.
The ultimate goal of our work is the construction a com-
plete, detailed geometric and topological model of a sur-
face from a sequence of views. A more complete version
of this paper will appear in [5].
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