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Abstract
We address the problem of ef�cient structure from mo-

tion for large, unordered, highly redundant, and irregularly
sampled photo collections, such as those found on Internet
photo-sharing sites. Our approach computes a smallskele-
tal subset of images, reconstructs the skeletal set, and adds
the remaining images using pose estimation. Our technique
drastically reduces the number of parameters that are con-
sidered, resulting in dramatic speedups, while provably ap-
proximating the covariance of the full set of parameters. To
compute a skeletal image set, we �rst estimate the accuracy
of two-frame reconstructions between pairs of overlapping
images, then use a graph algorithm to select a subset of im-
ages that, when reconstructed, approximates the accuracy
of the full set. A �nal bundle adjustment can then optionally
be used to restore any loss of accuracy.

1. Introduction
Most famous world sites have now been captured from

thousands of viewpoints, via images available on the Inter-
net. Recent results have demonstrated [20, 4, 21, 25] that it
is possible to adapt structure from motion (SfM) methods,
originally developed for video, to operate successfully on
such unstructured collections. This exciting development
suggests the possibility of reconstructing the world from
images on the Internet. However, the current generation of
unstructured SfM methods simply do not scale to thousands
or tens of thousands of images. Furthermore, SfM scaling
techniques like sub-sampling and hierarchical decomposi-
tion [9, 17] that work for ordered video sequences are more
dif�cult to apply to Internet collections, as the latter tend
to be unordered and highly oversampled in some regions
(popular viewpoints) and undersampled in others.

Intuitively, the dif�culty of reconstructing a scene should
depend on the complexity of the scene itself, not the number
of images. For such large, redundant collections, a much
smaller set of images may be suf�cient to represent most
of the information about the scene. If we could identify
such a subset of views—a skeletal set—we could focus the
reconstruction process on these skeletal images and produce
truly scalable algorithms.

The key technical problem is how to identify a subset of

views that maximizes the accuracy and completeness of the
resulting reconstruction while minimizing the computation
time. Translating high level concepts likeaccuracy, com-
pletenessandrun timeinto mathematical objectives that can
be optimized in the context of SfM is a challenging prob-
lem. We address this problem using two approximations.
First, we optimizeuncertaintyinstead of accuracy, since the
former can be computed without knowledge of ground truth
geometry. Second, we use the number of images as a proxy
for run time, which enables an algorithm-independent mea-
sure of ef�ciency. Completeness is ensured via the con-
straint that the skeletal set must “span” the full set and en-
able reconstruction of all the images and 3D points in the
full set via pose estimation and triangulation.

We formulate our problem by representing the joint co-
variance of the full set of images as a graph, where each
image is a node and edges encode relative pose uncertainty
(covariance) between pairs of images. The relative pose
uncertainty between any two images is estimated by com-
bining covariance estimates along paths between the corre-
sponding nodes in the graph. The problem is then to de-
termine askeletalsubgraph with the minimum number of
interior nodes that spans the full graph while achieving a
desired bound on the full covariance. For every pair of im-
ages, we compare their estimated relative uncertainty in the
original graph to the uncertainty in the skeletal graph, and
require that the latter be no more than a �xed constantt
times the former. While this problem is NP-complete, we
develop a fast approach that guarantees this constraint on
the covariance and in practice produces a dramatic reduc-
tion in the size of the problem.

Our experimental results show that the resulting ap-
proach increases ef�ciency for large problems by more than
an order of magnitude, with little or no loss of accuracy;
moreover, we reconstruct all of the images, not just the
skeletal set. The skeletal set is used only to make the com-
putation more ef�cient.

Our work is closely related to research on intelligent sub-
sampling of video sequences for SfM to improve robust-
ness and ef�ciency [9, 17, 19]. The main difference in our
work is that we operate on diverse, unordered sequences
with more complex topology than typical video sequences.
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Our work is also related to selectingcanonical views, e.g.,
for robot localization [3]. However, SfM requires different
considerations than previous work on canonical views.

Many techniques for speeding up SfM exist. A few real-
time systems have been used to reconstruct urban scenes
from video [1, 7]. Steedly and Essa reduce the number of
parameters updated during incremental bundle adjustment
by determining the effect of new information on the recon-
struction [23]. Martinec and Pajdla describe a system for
fast, global estimation of camera parameters, but with more
controlled data sets than the ones we address here [15]. Fi-
nally, Steedly,et al. [22], and Ni,et al. [16] partition recon-
structions in order to speed up bundle adjustment. Most of
these techniques are complementary to our work.

2. Overview
In this paper, areconstructionrefers to a set of recov-

ered 3D camera and point parameters. The SfM problem is
that of building a reconstruction using measurements (in the
form of feature correspondences) from a set of images. Our
goal is to work with a smaller set of measurements, but to
still compute as high-quality a reconstruction as possible.

How do we measure the quality of a reconstruction? A
few desirable properties arecompletenessand accuracy,
i.e., a reconstruction should span all parts of the scene visi-
ble in the images and should re�ect the ground-truth scene
and camera positions as closely as possible.

If completeness and accuracy were the only considera-
tions, SfM should use of all available measurements. How-
ever,ef�ciency is also important. For Internet image sets,
this tradeoff is particularly relevant. In these sets, there are
typically large numbers of popular, and therefore redundant,
views, along with some rare, but important (for reconstruc-
tion) views. If we could identify this small set of impor-
tant measurements, then we could potentially reconstruct
the scene much more quickly.

The main question is how to choose the subset of mea-
surements to use. For simplicity, rather than considering
individual measurements, we make decisions at the level
of images; for each image we either include or exclude
its measurements as a group. We call the set of images
selected for reconstruction theskeletal setand de�ne our
problem as follows: given an unordered set of images
I = f I 1; : : : ; I n g, �nd a small subsetS that yields a recon-
struction with bounded loss of quality compared to the full
image set. Such a reconstruction will be an approximation
to the full solution. Moreover, it is likely a good initializa-
tion for a �nal bundle adjustment, which, when run with all
the measurements, will typically restore any lost quality.

To make this problem concrete, we must �rst de�ne
quality. Let us �rst consideraccuracy, the property that the
recovered cameras and points should be as faithful to the
actual scene as possible. Without ground truth, it is impos-

sible to measure accuracy directly. However, it is possible
to estimate theuncertainty(covariance) in a reconstruction,
which is a statistical estimate of the accuracy.

For SfM, the covariance is rank de�cient because the
scene can only be reconstructed up to an unknown simi-
larity transform. This freedom in choosing the coordinate
system is known as thegauge freedom[24]. Covariance
can only be measured in a particular gauge, which can be
�xed by anchoring reference features, e.g., by �xing the lo-
cation and orientation of the �rst camera, and constraining
the distance to the second camera to be of unit length. Co-
variance is highly dependent on the choice of gauge. In the
example where the �rst camera is �xed, there is no uncer-
tainty in its parameters, whereas if another, distant camera
was frozen instead, the uncertainty in the �rst camera's pa-
rameters could be quite large.

For this reason, we do not measure uncertainty in a sin-
gle gauge, but rather �x each camera in turn and estimate
the resulting uncertainty in the rest of the reconstruction.
Since reconstructing the scene and measuring the actual co-
variance would defeat the purpose of speeding up SfM, we
approximate the full covariance by computing the covari-
ance in reconstructions ofpairsof images and encoding this
information in a graph. We also only consider covariance in
the cameras, and not in the structure, as the number of cam-
eras is typically much smaller than the number of points,
and the accuracy of the camera poses can be a good predic-
tor for accuracy of the points.

In particular, consider theimage graphGI , with a node
for every image, and two directed edges between any pair of
images with common features. Without loss of generality,
we assume thatGI is connected (in practice, we operate on
its largest connected component). Each edge(I; J ) has a
matrix weightCIJ , whereCIJ is the covariance in the two-
frame reconstruction(I; J ) of the parameters of cameraJ
when cameraI is held �xed. CIJ could be a full covariance
matrix with entries for both position and orientation. In this
paper, we model only the positional uncertainty, soCIJ is
a 3x3 matrix. Figure 1(a) shows an example image graph
with covariance weights.

For any pair of cameras(P; Q), we can useGI to es-
timate the uncertainty inQ if P is held �xed, by chaining
together covariance matrices along a path betweenP and
Q. To compute the exact covariance, we would need to in-
tegrate information along all paths fromP to Q. However,
theshortestpath fromP to Q gives us an upper bound on
the true covariance. Figure 1(b) illustrates this idea.

For shortest paths to be well-de�ned, we need scalar,
rather than matrix, path lengths. We use the trace,tr( C),
of the covariances as our scalar lengths. The trace of a ma-
trix is equal to the sum of the eigenvalues, so it expresses the
magnitude of the uncertainty. It is also a linear operator and
is invariant to rotation. Thus, adding up covariance matrices
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Figure 1.Modeling covariance with an image graph.(a) Each node represents an image, and each edge a two-frame reconstruction. Edge
(I; J ) is weighted with a covariance matrixCIJ representing the uncertainty in imageJ relative toI (the graph is directed, so edge(J; I )
is weighted with a matrixCJI ; only one edge is shown in the �gure). (b) To estimate the relative uncertainty between two nodesP andQ,
we compute the shortest path between them by chaining up covariances (and taking the trace at the end). In this graph, the shortest path is
shown with arrows, and ellipses represent the accumulated covariancealong the path. (c) If an edge is removed (in this case, the dashed
edge), the shortest path fromP to Q becomes longer, and therefore the estimated covariance grows. (d) Apossible skeletal graph. The
solid edges make up the skeletal graph, while the dotted edges have been removed. The black (interior) nodes form the skeletal setS, and
would be reconstructed �rst, while the gray (leaf) nodes would be addedusing pose estimation afterS is reconstructed. In computing the
skeletal graph, we try to minimize the number of interior nodes, while bounding the maximum increase in estimated uncertainty between
all pairs of nodesP andQ in the original graph.

(scaled and rotated to align adjacent models) and taking the
trace at the end is equivalent to adding up the (scaled) traces
of the individual covariances. We therefore use scalar edge
weights,wIJ = tr( CIJ ), taking care to scale the weights
appropriately when computing path lengths.

If we remove edges fromGI , the lengths of some short-
est paths (i.e., the estimated relative uncertainty in camera
positions) may increase, as illustrated in Figure 1(c). On the
other hand, removing edges fromGI can yield askeletal
graphGS that is more ef�cient to reconstruct. We estimate
this ef�ciency by simply counting the number ofinterior
(i.e., non-leaf) nodes inGS , since once we reconstruct the
interior nodes ofGS , the leaves can easily be added in af-
terwards using pose estimation, and the leaves do not affect
the overall connectivity of the graph. Our objective is there-
fore to compute a skeletal graph with as few interior nodes
as possible, but so that the length of any shortest paths (e.g.,
the estimated uncertainty) does not grow by too much.

There is an inherent trade-off in this formulation: the
more edges we remove (and the more leaves we create), the
faster the reconstruction task, but the more the estimated
uncertainty will grow. We express this trade-off with a pa-
rametert, called thestretch factor. For a given value oft,
the skeletal graph problem is to �nd the subgraphGS with
the maximum number of leaves, subject to the constraint
that the distance (length of the shortest path) between any
pair of cameras(P; Q) in GS is at mostt times longer than
the distance betweenP andQ in GI . A subgraphGS with
this property is known as at-spanner[2], so our problem is
to �nd a maximum leaf t-spannerof GI . Our algorithm for
solving this problem is described in Section 4.

A t-spanner subsumes the property of completeness,
since if a node were to be disconnected inGS , some short-
est path would have in�nite length. Furthermore, the skele-
tal graph will tend to preserve important topological fea-
tures inGI , such as large loops, as breaking such structures
will dramatically increase the distance between one or more
pairs of nodes.

Our approach is based on a simpli�ed probability model.
In particular, we consider only positional uncertainty, and
use shortest path covariance as a bound on the full pairwise
covariance. We make these simpli�cations so that the cost
of making decisions is signi�cantly smaller than the time
saved during reconstruction [8]. These approximations pro-
duce skeletal sets that yield remarkably good reconstruc-
tions with dramatic reductions in computation time, as we
will demonstrate in our experimental results.

Modeling higher-level connectivity. One issue with our
basic approach is that the image graphGI is not a suf�-
ciently expressive model of image connectivity for SfM. To
see why, consider three imagesA, B , andC, whereA and
B overlap, as doB andC, butA andC do not. These nodes
form a connected set inGI . However, the scale between
the two-frame reconstructions(A; B ) and(B; C ) cannot be
determined, and a consistent reconstruction cannot be built
from these images. In order to determine the scale,(A; B )
and(B; C ) must see at least one point in common. There-
fore, any path passing through nodesA; B; C in sequence
is not a realizable chain of reconstructions (we call such a
pathinfeasible).

To address this problem, we de�ne another graph, theim-
age pairgraphGP . GP has a node for every reconstructed
pair of images, and an edge between reconstructions that
share common features.GP is also augmented with a node
for every image, and is constructed so that a path between
two imagesP andQ has the same weight as the analogous
path inGI ; the only difference is that only feasible paths
can be traversed inGP . An example ofGI andGP show-
ing this construction is shown in Figure 2. This higher-level
connectivity imposes an addition constraint on the skeletal
graph: it must yield a single, feasible reconstruction. One
way to express this is to de�ne theembeddingof a sub-
graphGS of GI into GP as the subgraph ofGP containing
the nodes corresponding to the edges ofGS , and any edges
between these nodes. The embedding ofGS into GP must
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be connected for the skeletal graph to be feasible.
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Figure 2.Pair graph construction. (a) An example image graph,
with four images, showing the overlaps between images (1,2),
(2,3), (3,4), and (1,4). (b) A possible (simpli�ed) pair graph for (a),
with a node for each pair of images. All pairs of reconstructions
overlap, i.e., share some points in common, except for pairs (2,3)
and (3,4). (c) An augmented pair graph with edge weights. This
graph is augmented with a node for each image, and allows for
computing lengths of paths between images (with the constraint
that an image node can only appear at the ends of a path).

3. Building GI and GP

In this section, we describe the �rst step of our approach,
which is to create the image graphGI and the pair graph
GP . These graphs become the input to the skeletal graph
algorithm described next. We computeGI andGP in three
stages: (1) create a two-frame reconstruction for every pair
of matching images, removing duplicate images as we go,
(2) compute the relative covariance in camera positions for
each pair, (3) check which pairs of two-frame reconstruc-
tions overlap (and are therefore edges inGP ).

We �rst obtain correspondences by extracting SIFT fea-
tures from each image [14], matching features between
each pair of images, and forming connected components of
matches to produce tracks. The matching step is extremely
time-consuming on large data sets, but researchers are mak-
ing signi�cant progress on matching [6], and we anticipate
that much faster matching techniques will soon be available.

Next, we compute a reconstruction for each matching
image pair using the �ve-point relative pose algorithm of
Nistér [18] inside of a RANSAC loop. The �ve-point al-
gorithm requires both cameras to be calibrated. Therefore,
we only consider images that have a focal length estimate
encoded in their EXIF tags (true for most modern digital
cameras) and assume that each camera has unit aspect ratio,
zero skew, and a principal point at the image center. While

the focal length estimate can be off by several percent (and
is occasionally completely wrong), we have found that it
is usually close enough to give reasonable pairwise recon-
structions. After estimating the relative pose, we triangu-
late the inlier matches and run bundle adjustment using the
SBA library [13]. If the average reprojection error of a re-
construction is too high (we use a threshold of 0.6 pixels),
we discard the reconstruction, as these are usually misesti-
mated (due, for instance, to an erroneous focal length).

After a pair is reconstructed, we check whether the im-
ages are near-duplicates, i.e., whether they have very similar
image content, or one is subsumed by other. We consider
imageJ to duplicate imageI if: (a) the distance,dc, be-
tween the camera centers is small compared to the median
distance,dp, between the cameras and the reconstructed
points (we usedc < 0:025dp), and (b) the set of images
overlappingJ is a subset of the images overlappingI . If
both of these criteria hold, it is likely that nearly all of the
geometric information in imageJ is also present in image
I , and we removeJ from consideration (it will be added
back in at the very end).

Without duplicate detection, the total number of pairs
processed would be equal to the number of matching im-
ages, which could be as high asO(n2) for n images. With
duplicate detection, we can often avoid processing many
pairs. For instance, in the extreme case where alln images
are the same, we will only processn pairs, rather thann2.
In practice, the total number of pairs processed depends on
the order in which they are considered; if many duplicates
are removed early, fewer pairs will be processed. There-
fore, observing that images that are more similar also tend
to have more matching features, we sort the pairs by num-
ber of matches, and consider those with the most matches
�rst. For the Internet collections we tested, typically about
a third of the images are removed as duplicates.

Once we have reconstructed a pair(I; J ), we estimate
the covariances of the two camera positions. During bun-
dle adjustment, SBA uses the Schur complement to com-
pute the HessianHCC of the reduced camera system [24].
We can estimate the covariances in the cameras by invert-
ing HCC and selecting the submatrix corresponding to the
camera positions. However,HCC is singular because of the
gauge freedom, so we add constraints to the reconstruction.
To estimate the covariance in the position ofJ , we �x po-
sition and orientation by constraining cameraI to be at the
origin with an identity rotation, and �x the scale by adding
a weak constraint to the mean of the 3D points (after re-
moving very distant points); in practice, we have found this
to work better than constraining the distance between the
cameras to be of unit length.HCC is then invertible, and
can be used to �ndJ 's covariance.I 's covariance is com-
puted analogously by �xing cameraJ (in general, the two
covariances are not identical).
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After computing the covariances, we construct the pair
graph GP . Recall that every node ofGP represents a
pairwise reconstruction, and that an edge connects every
pair of overlapping reconstructions(I; J ) and(J; K ). The
main remaining task is to decide which pairs of nodes are
connected. To do so, we consider each triple of images
(I; J; K ) where(I; J ) and(J; K ) are reconstructions. We
�nd the intersection of the point sets of(I; J ) and(J; K ),
then use absolute orientations [12], inside a RANSAC loop,
to �nd a similarity transformT between them. If there are
at least a minimum number of inliers toT (we use 16), the
two edges(( I; J ); (J; K )) , and((K; J ); (J; I )) are added
to GP . The scale factorssijk andskji (wheresijk skji = 1 )
between the two reconstructions are also stored with each
edge, so that we can properly align the scales of adjacent
reconstructions when computing shortest paths inGP .

Finally, we augment theGP with nodes and edges for
each image, as described in Section 2.

4. Computing the skeletal set

We formulate the problem of computing the skeletal set
as that of �nding a maximum leaft-spanner ofGI , called
theskeletal graph, GS . Recall that the embedding ofGS in
GP must be connected. To ensure that this constraint is sat-
is�ed, our algorithm maintains data structures for bothGS

and its embedding inGP . OnceGS is found, the skeletal
setS is the set of interior nodes ofGS .

Unfortunately, the problem of computing a minimumt-
spanner for general graphs is NP-complete [5], so it is un-
likely that an exact solution to the maximum leaft-spanner
problem can be found ef�ciently. We propose an approxi-
mation algorithm for computingGS , which consists of two
steps. First, a spanning treeTS of GI is constructed. The
construction ofTS balances computing a tree with a large
number of leaves (a maximum leaf spanning tree), with
computing a tree with a small stretch factor (at-spanner).
Because no tree may have a stretch factor oft, the second
step is to add additional edges toTS to satisfy thet-spanner
property. We now describe each of these steps.

4.1. Constructing the spanning tree

We start by describing a simple, greedy approximation
algorithm for computing a maximum leaf spanning tree
(MLST) proposed by Guha and Khuller [10]. The idea be-
hind the algorithm is to grow a tree one vertex at a time,
starting with the vertex of maximum degree. We then mod-
ify this algorithm to consider the edge weights.

Basic MLST algorithm. The algorithm maintains a color
for each node. Initially, all nodes are unmarked (white), and
the algorithms proceeds as follows:

1. Select the nodev of maximum degree. Addv to TS .

2. Add every unmarked neighbor ofv, and the edge con-
necting it tov, to TS and color these neighbors gray.

3. Select the gray nodev with the most unmarked neigh-
bors, and go to step 2, until all nodes are black or gray.

We �rst modify this algorithm to ensure that the con-
structed tree is feasible. To do so, we maintain a parent for
each node (except the �rst). The parentP(v) of a nodev is
the node that causedv to be colored gray. In step 2 of the
algorithm, we only color a neighboru of v gray if the path
(P(v); v; u) is feasible. Similarly, in step 3, when counting
unmarked neighbors of a nodev we only consider those for
which (P(v); v; u) is feasible.

Considering edge weights. The basic MLST algorithm
�nds a spanning tree with a large number of leaves, but ig-
nores the edge weights. Ideally, we want to select images
that not only have high degree, but which are also critical for
keeping distances between nodes as short as possible. For
instance, it might be desirable to choose nodes and edges
that are on a large number of shortest paths, as removing
them may result in large changes in distances between many
pairs of nodes. On the other hand, some edges in a graph
may not be alonganyshortest path, and are therefore rela-
tively unimportant. Therefore, we integrate some notion of
how important a node or edge is into the algorithm.

There are many possible ways of measuring the impor-
tance of a node to the global connectivity of a graph. We
take a very simple, local approach: we �rst measure the
importance of eachedge(I; J ) by computing the length of
the shortest feasible path betweenI andJ (we denote this
lengthdf (I; J ; GI )), and dividing it by the length of(I; J ):

imp( I; J ) =
df (I; J ; GI )

wIJ
:

If the edge(I; J ) is itself a shortest path betweenI and
J , imp( I; J ) = 1 . Otherwise,imp( I; J ) < 1, and the
longer the edge is compared to the shortest path, the smaller
imp( I; J ) will be. Some reconstructions (edges) are nat-
urally ill-conditioned, and a much higher certainty can be
achieved via a detour through one or more other images.
Such edges receive a low importance score.

Before running the basic MLST algorithm, we remove
edges that have an importance score lower than a threshold
� . The degree of a node is then the number of incident “im-
portant” edges, and is a better predictor for how important
the node is than the raw degree.

The tradeoff when setting� is that with a very small
threshold, very few edges will be pruned and the MLST
algorithm will try to maximize the number of leaves inTS ,
without considering the stretch factor. With a larger thresh-
old, more edges will be pruned, and it may be more dif�-
cult to create a tree with a large number of leaves, but the
stretch factor of the tree will likely be smaller. There is a
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connection between this tradeoff and the value oft. Any
edge(I; J ) with imp( I; J ) < t � 1 will be excluded from a
minimumt-spanner, because there must be a path between
I andJ in the original graph that is at leastt times shorter
thanw(I; J ), by the de�nition of importance. Therefore,
we can exclude all edges withimp( I; J ) < t � 1. In all of
our experiments, we used a larger threshold of� = 4 t � 1.

4.2. From MLST to t­spanner
The treeTS computed above spans the entire graph, but

may not be at-spanner. To guarantee that the stretch fac-
tor of the skeletal graph is at mostt, we may need to add
additional edges, forming a graphGS with cycles. In or-
der to determine which edges to add, we need a way to test
whether the target stretch factor has been met. While at �rst
it seems that we need to compute paths between all pairs of
nodes to check this, it suf�ces to only check paths between
neighboring pairs(I; J ). This follows from the fact that if
the distance between all neighboring nodes in a graph is di-
lated by at most a constant factort, the distance between
any two nodes must also be dilated by at most a factort,
because each edge on the original shortest path can be re-
placed by a new path at mostt times longer.

We therefore enumerate all edges ofGI not included in
the treeTS . For each edge(I; J ), we computedf (I; J ; GI )
anddf (I; J ; GS ). If df (I; J ; GI ) < t � df (I; J ; GS ), we
add the edge toGS ; otherwise, we omit the edge.

The set of edges added toGS depends on the order in
which the edges are processed, since adding a single edge
can affect many shortest paths. Therefore, we �rst consider
edges between nodes that are already on the interior ofGS

(i.e., black nodes). We then follow [2] and consider the
remaining edges in order of increasing covariance weight.

OnceGS has been augmented with the necessary edges,
the skeletal setS is selected as the set of non-leaf nodes of
GS . The skeletal set is reconstructed with an incremental
bundle adjustment technique [21], and the remaining im-
ages are added using pose estimation [11]. Bundle adjust-
ment is then optionally run on the full set.

In summary, our system has the following stages:

1. Compute feature correspondences for the images.
2. Compute a reconstruction and covariances for each

matching pair, and remove duplicates (Section 3).
3. Prune reconstructions with low importance.
4. Construct a MLST fromGI (Section 4.1).
5. Add edges to guarantee the stretch factor (Section 4.2).
6. Identify and reconstruct the skeletal set.
7. Add in the remaining images using pose estimation.
8. Optionally, run a �nal bundle adjustment.

Implementation of shortest path computation in GP .
We compute shortest paths in two parts of the skeletal set

algorithm: (1) determining which edges to remove in the
initial importance pruning stage, and (2) determining which
edges must be added toTS to achieve the stretch factor. As
noted earlier, we compute these paths in the graphGP .

We compute shortest paths inGP with a modi�ed ver-
sion of Dijkstra's algorithm. The main difference comes
from the fact that the covariance weights on the edges ofGP

are derived from reconstructions in different coordinate sys-
tems, so the covariances are not directly comparable. Thus,
we use the scale factors computed when constructing the
pair graph to scale the edge weights as we are �nding a
shortest path (the edge weights are scaled by the square of
the scale factors, as the trace of a covariance matrix grows
with the square of the scene scale). In addition, for each
imageI , we need to make sure that all outgoing edges have
weights measured in the same coordinate system. There-
fore, we select a reconstruction(I; J ) to be the canonical
coordinate system forI , and align all other reconstructions
(I; K ) to (I; J ). Not all reconstructions(I; K ) may over-
lap with (I; J ), but through transitivity most can be aligned
(we remove any remaining reconstructions).

We can often terminate the shortest path algorithm early
(i.e., we do not always need to �nd the exact shortest path
between two nodes). In the importance pruning stage, if at
any time we �nd a path inGI shorter than� � wIJ , we know
that (I; J ) can be pruned. Similarly, in the stretch factor
stage, if we �nd any path inTS shorter thant � wIJ , we
know that(I; J ) can be omitted.

5. Results
We have tested our algorithm on several large Internet

photo collections of famous world sites (St. Peter's Basil-
ica, Stonehenge, the Pantheon, the Pisa Duomo, and Trafal-
gar Square). We obtained these data sets by doing keyword
searches on Flickr and downloading the results. We also
tested on a second collection of the Pisa Duomo taken by
a single photographer with the express purpose of scene re-
construction (we refer to the Internet collection as Pisa1,
and this second collection as Pisa2).

We reconstructed each data set using our skeletal graph
algorithm with a stretch factort = 16. Visualizations of
the full and skeletal image graphs for the Pantheon data set
are shown in Figure 3. Note that the skeletal graph is much
sparser than the full graph, yet preserves the overall topol-
ogy. Figure 3 shows overhead views of the Pantheon during
several stages of our algorithm; note that both the inside and
outside are reconstructed. Figure 4 shows the reconstruc-
tion of the Pisa2 data set. See the supplemental website
(http://grail.cs.washington.edu/projects/skeletalgraphs/) for
visualizations and reconstructions for the other data sets.

Table 1 summarizes the running time of the results (ex-
cluding matching). The running times for our algorithm are
for the entire pipeline (computing pairwise reconstructions,
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Name # images largest cc j S j #reg full #regS rt full rt S rt S+BA
Stonehenge 614 490 72 408 403 276 min 14 min 26 min
St. Peter's 927 471 59 390 370 11.6 hrs 3.54 hrs 4.85 hrs
Pantheon 1123 784 101 598 579 108.4 hrs 7.58 hrs 11.58 hrs
Pisa1 2616 1671 298 1186 1130 17.8 days 14.68 hrs 22.21 hrs
Trafalgar Square 8000 3892 277 - 2973 > 50 days 17.78 hrs 30.12 hrs
Pisa2 1112 1110 352 1101 1093 18.5 days 32.9 hrs 37.4 hrs

Table 1.Data sets and running times.Each row lists:name, the name of the scene;# images, the number of input images;largest cc, the
size of the largest connected component of the image graph;j S j, the size of the computed skeletal set;#reg full, the number of images
registered in the full reconstruction;#regS, the number of images registered in the skeletal set reconstruction;rt full , the running time of
the full reconstruction;rt S, the running time of the skeletal set reconstruction, including computing thepairwise reconstructions and the
skeletal graph;rt S+BA, the running time of the skeletal set reconstruction plus a �nal bundle adjustment.

(a) (b) (c) (d) (e)
Figure 3.Reconstructions of the Pantheon. (a) The full image graph for the Pantheon and (b) our skeletal graph. The black (interior)
nodes of (b) comprise the skeletal set, and the gray (leaf) nodes are added in later. The Pantheon consists of two dense sets of views
(corresponding to the inside and outside), with a thin connection between them (views taken outside that see through the door). Note how
the skeletal set preserves this important connection, but sparsi�es thedense parts of the graph. (c) Reconstruction from the skeletal set
only. (d) After using pose estimation to register the remaining images. (e) After running bundle adjustment on (d).

building the skeletal graph, and reconstructing the scene).
For Trafalgar (the largest set), the baseline method was still
running after 50 days.

The results show that our method takes signi�cantly less
time than the baseline method, and the performance gain
increases dramatically with the size of the data set. The
speedup ranged from a factor of 2 for St. Peter's, to a factor
of about 40 for Trafalgar Square, the largest collection. At
the same time, our algorithm recovers most of the images
reconstructed by the baseline method. A few images are
lost; most of these are very tenuously connected to the rest,
and can mistakenly be pruned as infeasible while building
the skeletal graph. Our method also worked well on the set
taken by a single person (Pisa2), though the fraction of im-
ages in the skeletal set is somewhat higher than for the Inter-
net sets. For most of the data sets, our algorithm spent more
time in reconstruction than in building the skeletal graph;
for a few particularly dense sets (e.g., the Pantheon), the
preprocessing took more time.

Next, we analyze the tradeoff between the stretch factor
t and the accuracy of the reconstruction. We �rst recon-

structed St. Peter's with multiple values oft, and compared
the results to the reconstruction obtained from running the
baseline method on the full image set. For each value oft,
we aligned the resulting reconstruction to the baseline re-
construction by �nding a similarity transform between cor-
responding points, and computed the distance between cor-
responding cameras, both before and after a �nal bundle.
Figure 5 shows the results, plotting the size of the skeletal
set, and the median error in camera position, for several val-
ues oft. Ast increases, the size of the skeletal set decreases,
and the error before bundling increases. However, applying
a �nal bundle results in a low, relatively constant error level
(in this case, a median error between 6-8cm for a building
about 24m in width), even for stretch factors as large as 30,
at which point only 10% of the images are used in the skele-
tal set. For even larger stretch factors, however, the bundled
solution begins to degrade, because the initialization from
the skeletal set is no longer good enough to converge to the
correct solution. We also ran the same experiment on an
image collection with known ground truth, with compara-
ble results (please see the supplemental website).
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Figure 4. View of the Pisa1 reconstruction.
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Figure 5.Stretch factor analysis for St. Peter's.Left: stretch fac-
tor vs. number of nodes in the skeletal set. Right: median error
(in meters) in camera position for reconstructions before and after
�nal bundle adjustment. As the stretch factor increases, the error
before bundling increases, but applying bundle adjustment results
in a low error level (around 6-8cm; note that the nave of the cathe-
dral is about 24m across), even for stretch factors as large as 30.

6. Conclusions
We have developed an algorithm for reconstructing In-

ternet photo collections by computing a skeletal graph, and
shown that this method can improve ef�ciency by up to an
order of magnitude or more, with little or no loss in ac-
curacy. Our work suggests many interesting avenues for
future work. For instance, we would like to �nd ways of
using a more sophisticated model of uncertainty, e.g, tak-
ing uncertainty in camera orientation, and perhaps in scene
structure, into account, or by considering multiple paths be-
tween image pairs. It might also be fruitful to work with
triples, rather than pairs, for convenience in representing
connectivity and improved robustness. It would be interest-
ing to adapt our model to remove measurements at a �ner
granularity, e.g., to remove points as well as images. We
ultimately hope to extend our work to even larger sets, in-
cluding entire cities.
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