
Pushing the Envelope of Modern Methods for Bundle Adjustment ∗

Yekeun Jeong†∗, David Nister‡, Drew Steedly‡, Richard Szeliski‡, and In-So Kweon†

Robotics and Computer Vision Lab. KAIST†

Microsoft Research‡

ykjeong@rcv.kaist.ac.kr∗

Abstract

In this paper, we present results and experiments with
several methods for bundle adjustment, producing the
fastest bundle adjuster ever published. The fastest methods
work with the well known reduced camera system and han-
dle the block-sparse pattern arising in the reduced camera
system in a natural way. Adapting to the naturally aris-
ing block-sparsity allows the use of BLAS3, efficient mem-
ory handling, fast variable ordering, and customized sparse
solving all at the same time. We present two methods, one
using exact minimum degree ordering and block-based LDL
solving, and one using block-based preconditioned conju-
gate gradient, both on the reduced camera system. We
show experimentally that the adaptation to the natural block
sparsity allows both these methods to perform better than
previous ones. Further speed improvements are achieved
by the novel use of embedded point iterations. The embed-
ded point iterations take place inside each camera update
step, yielding a higher cost decrease from each camera up-
date step. This is especially true for points projecting far
out on the flatter region of the robustifier.

1. Introduction

Bundle adjustment has become an essential part of struc-
ture from motion (SfM) and 3D reconstruction, attracting
increased interest from the computer vision community. As
a result, a number of approaches to bundle adjustment have
been proposed in the last decade. These approaches can be
divided into two groups: the first focuses on making the
bundle adjustment algorithm as efficient as possible, while
the second focuses on reducing the size or frequency of in-
vocation of individual bundle adjustments.

Examples of the first group include [22, 14, 15, 17, 4, 2].
[22, 14] explain bundle adjustment and how to implement it.
Additionally [22] discusses more theoretical issues, includ-

∗This work was done while Yekeun Jeong was an intern at Microsoft
Research and supported by Ministry of Knowlege Economy under Human
Resources Development Program for Convergence Robot Specialists.

(a)

(b)
Figure 1. Perturbed(left) and adjusted(right) structures of (a) the
sanmarco dataset (288 cameras, 144656 points, 468541 pro-
jections) and (b) the korpalace dataset (1195 cameras, 247500
points, 1035611 projections) by proposed bundler. With the san-
marco dataset, our new bundler using block-based precondition-
ing and embedded point iterations takes 31.8s (45 iterations) and
achives 1.05 pixel RMS reprojection error, while the widely used
conventional bundler [14] stops at 2.42 pixel error after 376.3s
(104 iterations). For the korpalace dataset, the conventional bun-
dle adjuster cannot run in 32-bit machine due to a huge amount
of memory required. Our new bundler ends up with 0.98 pixel
error after 190.9s (56 iterations), thanks to its efficient memory
handling.

ing gauge freedom, inner constraints, and the reliability of
parameter estimates. The Levenberg-Marquardt algorithm
(LM) [13] has been a popular choice for bundle adjustment.
However, the authors of [15] question this choice and show
that the dog leg algorithm (DL), which is designed to explic-
itly use a trust region concept, is a better alternative to LM.
In [17], out-of-core bundle adjustment is proposed, which
follows a divide-and-conquer approach. With that aspect
only, this work may be classified into the other group, but
they have an additional contribution: by caching lineariza-
tions of submaps for the full separator system, they enable
reconstructing a large-scale system, given a good graph cut



and initialization. Recently there has been an attempt to
utilize structural layout of variables for a better precondi-
tioning of Conjugate Gradients (CG) in bundle problems so
that CG steps affect the explicit change of parameters more
directly [4]. Another recent work in [2] suggested the use
of a sparse direct method for Cholesky factorization and a
block diagonal preconditioned conjugate gradient.

In the second category, [18, 20, 21, 16, 7, 11, 8] have
proposed various approaches to apply bundle adjustment.
The authors of [18] recover 3D structure from a long se-
quence by performing bundle adjustment hierarchically,
from segment-wise to global, and also suggest an efficient
approach that reduces the number of frames in the global
system by introducing virtual key frames. In [20], the au-
thors reduce the redundancies of the brute force bundling
by checking which variables need to be optimized after ev-
ery new frame. [21] proposes a spectral partitioning ap-
proach, which divides a large-scale bundle problem into
smaller subproblems and preserves the low error modes of
the original system. [16, 7] investigate the proper applica-
tion of the local bundle adjustment. While [16] suggests
applying local bundle adjustment after every new keyframe
is found, [7] suggests applying it after every added frame.
Both of them also analyze what number of recently added
frames is optimal for given datasets. [8] recently proposed
a method which includes uncertainty propagation and the
maximum likelihood estimation of the local bundle adjust-
ment given a particular noise model. In the case of [11], a
relative frame representation is introduced; instead of rep-
resenting cameras in common global coordinates. They use
relative motions between cameras combined with a sequen-
tial SfM and efficiently loop closing.

Although many previous works have been presented,
bundle adjustment is still the primary bottleneck in relevant
applications and is problematic in very large-scale recon-
structions. In this paper, we present several methods for
dramatically improving the performance of the bundle ad-
justment (i.e., bundler). We exploit the block-sparsisy pat-
tern arising in a reduced camera system by carrying out
BLAS31 operations, efficient memory handling, and fast
block-based linear solving. Furthermore, the novel embed-
ded point iterations (EPIs) considerably improve the com-
putational speed by yielding a high cost decrease from each
camera update step and allowing the convergence to appear
within a small number of iterations. Our approach also does
not require any special assumption or hardware, and is ex-
actly the same as conventional bundlers in terms of func-
tionality and usage in related applications. The fact that
it is possible to use our approach in combination with all
other previous approaches demonstrates the generality and
the applicability of our proposed method.

The rest of the paper is organized as follows. Section

1BLAS3 is a library of matrix-matrix operations

2 briefly explains the conventional bundler. Section 3 dis-
cusses the details of how to use the block structure and Sec-
tion 4 describes our contributions to solving the reduced
camera system. The motivation and the implementation of
EPIs are in Section 5. We experimentally show that our
proposed methods perform substantially faster than previ-
ous methods in Section 6.

2. Bundle Adjustment
Bundle adjustment (BA) is the problem of refining a vi-

sual reconstruction to produce jointly optimal 3D structure
and viewing parameter [22] by minimizing the robustified
squared sum of all possible reprojection errors. At the out-
ermost layer, BA is carried out using Levenberg-Marquardt
(LM) algorithm [13], one of the dampened Newton meth-
ods. The LM algorithm assumes the cost function to be
locally quadratic and dampens the Hessian by controlling
a dampener λ when the function is not fitted well. In
our case, to save more computation load, we use a LM
variant that differs in how the dampener affects the hes-
sian as in [7]. In general, the computed Jacobian J is a
2×(kM+3N) matrix and the resultant HessianH = JTJ
is a (kM + 3N)× (kM + 3N) matrix, where M,N, k are
the number of cameras, points, and the parameters for one
camera respectively. This means that one needs to solve
(kM + 3N) × (kM + 3N)-sized linear system and this
normally takes too much time. Fortunately, in most cases,
M is much smaller than N and the Schur complement can
be used to reduce the large system to a smaller kM × kM
linear system Hrc, the so called reduced camera system
(RCS) [22, 10]. For more details on bundle adjustment,
please refer to [22, 14, 7]. Our implementation is similar in
spirit to [7], including computing outer products and keep-
ing sine values of rotation.

2.1. The Reduced Camera System

The Schur complement transforms the linear solving of
H to another linear solving of Hrc and a back-substitution.
Because the size of Hrc only depends on the size of camera
parameters, bundle adjustment does not suffer from a very
large number of points anymore. Note that if this Schur
complement is computed explicitly, many advantages may
be lost. Constructing the RCS implicitly is very important
and allows faster speed and smaller memory usage [7]. How
to manage the structure of RCS and how to solve RCS are
explained in Section 3 and 4.

3. Block Structure
The fact that a block-sparse pattern arises naturally in a

reduced camera system is very well known [22, 14, 7, 6, 17].
A fair amount of research has already been done on the
topic of re-ordering techniques for the cameras, designed to



reduce fill-in during a direct solution, but considerable im-
provement is still required. We suggest several ways to sig-
nificantly enhance the efficiency and the speed of the dom-
inant processes such as building a reduced camera system
and LM optimization.

It is easier if we treat all camera parameter blocks iden-
tically, since this allows a very simple and efficient block
solver to be applied to the homogeneous block structure of
the reduced camera matrix. However, practical applications
of SfM should deal with various unknown cameras at the
same time, as in [19, 1, 2]. A mixed set of cameras con-
taining partially known, fully known and unknown intrin-
sics may be an important case. Fixed parameters need to be
omitted, and the parameters shared by several cameras need
to be joined. This breaks the homogeneous block structure.
To resolve this conflict, we choose the smallest block size
that always contains free parameters as the block size, and
put the other variables, which are sometimes fixed, or free,
or joined, on the right hand side of the Hessian. This results
in an arrow matrix with the extra free variables along the
right and bottom sides, and the upper-left block consisting
of fixed-sized blocks.

With the same motivation of keeping a homogeneous
block structure, the gauge is left globally free. The gauge
freedom of rotation, translation and scale is simply handled
for each step by the dampener used in the optimization. A
globally free gauge is known to improve convergence speed
in general [22]. Other alternatives, such as fixing selected
cameras and baselines were tried, with no discernible ef-
fect, and hence the floating gauge is preferred in order to
preserve the homogeneous block structure.

The block structure allows for efficient memory han-
dling, variable re-ordering, and customized sparse solving
while maintaining the use of BLAS3, which is a library
of matrix-matrix operations. The sparsity pattern is block-
based, in that every block corresponds to a pair of cameras,
and that block is either completely zero or completely filled
in depending on whether the two cameras have a point track
directly in common. The pattern persists across all the iter-
ations of a bundle adjustment process. Before starting the
iterations, the pattern is computed as an upper triangular
bit-mask. Then, a sparse block matrix is prepared. This
is accessed through a matrix of pointers, with valid point-
ers only to the non-zero blocks. This design is chosen for
speed of access to the blocks during accumulation to the re-
duced camera matrix, and improves the speed on problems
containing the tens of thousands of cameras. Each block
is a square with sidelength b equal to the number of cam-
era parameter (b = 9 for the uncalibrated camera model
with two radial distortion parameters). Each whole block
is stored in consecutive memory. The matrix is solved by
a sparse block-based LDL factorization or conjugate gra-
dient and back-substitution [9]. The solver spends essen-

tially all of their time performing multiplication of the b× b
blocks, a multiplication operation that can be completely
unrolled and optimized. Our experiments indicate that even
for dense systems where each pair of cameras share a track,
the improved cache-locality and the BLAS3 nature of the
block-solver produces a four times speed-up.

4. Solving Reduced Camera System
As mentioned in section 2.1, the reduced camera sys-

tem (RCS) is obtained by a special Schur complement trick
that makes the dimensionality compact. Moreover, several
methods to efficiently solve the RCS, such as reorderings,
sparse Cholesky factorization, and preconditioned conju-
gate gradient have been employed [22, 2]; an efficiently
accumulating RCS has also been suggested [7]. However,
several aspects exist that can still be improved further. In
this paper, we explain how the proposed block structure and
resultant block-based computation assist to improve these
aspects. We also clarify CG and related topics, which are
slightly ambiguous to use and have never been investigated
by carrying out full performance analysis, to suggest the
best method to construct the fastest bundler. Finally we in-
troduce the block-based preconditioned CG.

4.1. Variable Ordering

The cameras are ordered to minimize the amount of
blocks that are filled in during the LDL block factorization.
While doing this completely optimally is NP-complete, sev-
eral good and efficient approximate techniques exist. Ap-
proximate minimum degree (AMD) is a popular and pow-
erful modern reordering technique [5, 6]. We actually per-
form exact minimum degree (MD) ordering. The reason
why this is a better choice than AMD is that while the order-
ing takes place on the block level, the core factorization per-
forms block operations that consist of b3 scalar operations,
where b is the size of one camera block. Hence, the time
taken to find the ordering is swamped by the core factor-
ization, and any improvement on the fill-in will repay itself
b3-fold. The situation for scalar sparse factorizations is dif-
ferent. In that case the exact MD ordering takes roughly the
same amount as the subsequence core factorization, while
the AMD can be found faster (say for example in 20% of
the time) without sacrificing much quality on the ordering,
resulting in efficiency improvements on the whole process
of up to 40%. In this paper, we use reverse Cuthill-McKee
ordering (REV) as an AMD in the experiments.

4.2. Preconditioned Conjugate Gradient

Conjugate gradient algorithm (CG) is the most widely
used iterative method for solving large sparse linear systems
and is the preferred technique for solvingHrcx = −g when
the system is large. Most of cameras distant to each other



observe different scenes, and this results in zero blocks of
reduced camera matrix. Therefore, the larger image set nor-
mally causes the sparser system. In fact, CG reduces the
time spent for solving the system and the size of required
memory as well. However, one important thing that remains
is that the convergence of CG is highly affected by the con-
dition number of the system H .

In order to reduce the condition number, a precondition-
ing step is essential. If we fully (optimally) precondition the
entire reduced system (which means thatH−1 is used as the
preconditioner P ), CG will converge in a single iteration,
but this is same as solving the full LDL. Consequently, we
need to find a better trade-off between no preconditioning
(P = I) and the full preconditioning (P = H−1). The
Jacobi preconditioner,

P = D−1, D = diag{H}, (1)

and the Symmetric Successive Over Relaxation (SSOR)
preconditioner,

P = (D + L)−TD(D + L)−1, H = D + L+ LT , (2)

have been conventionally used for the scalar-based CG. We
propose preconditioning with limited bandwidth (truncated
diagonals) as an alternative. To indicate the limited band-
width, let Hn be the matrix containing 1 to n-th block di-
agonals and zeros for the rest block diagonals. When H is
a N ×N block matrix, H0 and HN equal to I and H . The
band-limited block-based preconditioner is notated as,

P = H−1
n , 0 ≤ n ≤ N, (3)

and is implemented with our customized block operations.
Note that as with LDL factorization, the ordering of blocks
makes a difference to the amount of (within-band) fill-in.
Furthermore, the ordering also affects which out-of-band
block are dropped and hence the efficacy of the precondi-
tioner, which then affects the convergence rate of CG. Based
on the performance comparison in Fig. 2, we decide which
preconditioner is good. A detailed discussion is presented
in the section 6.1.

How many iterations should be used inside each
Levenberg-Marquardt step needs to be addressed. CG guar-
antees the convergence and exact solution as well as LDL
after N iterations for an N × N matrix, but N CG itera-
tions usually take as much time as the complete LDL. On
the other hand, if we force CG to stop earlier, we may lose
the accuracy of the solution for normal equation. We solve
this problem by adopting a stopping criterion on relative de-
crease of squared residual. The criterion is,

ε ≥ rk
T
rk

r1T r1
, (4)

where rk is the residual after the k-th iteration, where we
set ε to 10−8. This works reasonably well. In our experi-
ments, the accuracy loss causes a negligible effect and does

not degrade the convergence of any bundlers. As a result,
the proposed block-based preconditioned CG achieves a re-
markable improvement.

5. Embedded Point Iterations

After the camera update step is computed, it is standard
to back-substitute for the point update. We have the option
to take that point update step, but also to iterate on each
of the points separately p times before the complete cam-
era+point update step is considered complete and scored.
Note that this is different from the vastly inferior procedure
of alternation, in which points and cameras are moved inde-
pendently. Instead, the camera update step is computed cor-
rectly based on allowing both cameras and points to move
together, but the point updates given the correct camera
moves use full optimization rather than just a first order pre-
diction.

The intuition behind this is that for large, dense systems,
EPIs are cheap compared to the full update step. Moreover,
the camera steps are based on many point measurements
and are therefore stable, while the point updates, which are
based on as few as two observations, can be more erratic.
Therefore, it is sometimes worth paying the small price of
multiple point iterations in order to bring the points back to
rest and to get the most out of each camera update step.

The EPIs are much more effective when a robustifier is
applied to the cost. The main problem with least squares
is its high sensitivity to outliers and this comes from the
thin tails of Gaussian distribution [22]. To avoid this situa-
tion, we apply a robustifier to the squared errors in order to
model heavier tails in the error distribution [3]. However,
these robustifiers have flat (or near-flat) regions and points
lying here move slowly during bundle iterations. Therefore,
our EPIs are very helpful and usually save a few bundle it-
erations.

In practice, we apply point iterations at three different
places and name them pre, core and post point iterations,
respectively. These three point iterations commonly sync
up the points to the current cameras. The pre-EPI is only
performed before the first bundle iteration to make sure the
given 3D points are optimal for the current cameras and this
step is very useful for both of the robustified/non-robustified
cost. The core-EPI reduces the cost further after the back-
substitution and affects the decision on accepting the current
updates. The post-EPI is applied after each complete bun-
dle iteration and naturally replaces the pre-EPI of the next
bundle iteration.

6. Experimental Results

We performed experiments using two kinds of
datasets−synthetic and real. For the synthetic datasets, we
randomly generate cameras and points around a sphere



set cameras points projections variables error
9 111 47193 134142 142356 10.70

26 288 144656 468541 435984 18.76
29 383 283343 889911 852710 5.34
39 1083 411913 1225846 1243320 9.15
40 1195 247500 1035611 750865 39.37

Table 1. Detailed information about 5 out of our 40 datasets.
All datasets are randomly perturbed. Listed sets are named as
(afternoon, sanmarco, annecy, cliffhouse, korpalace) in order.
The values in the error column are the RMS reprojection errors in
pixel. The entire table is available in [12].

with a given radius. The values 1.0 and 0.5 are taken as the
radius for the cameras and points, respectively. Basically,
all the cameras are looking at the center of the sphere,
and their extrinsic parameters are randomly perturbed.
Points are distributed inside the small sphere. A hundred
points are generated for a camera and shared with ten
other cameras chosen randomly. To generate more realistic
camera networks, five out of the ten cameras are selected
from near neighbors and the other five from far ones. All
synthetic datasets are processed on a 2.93GHz quad core
PC without multi-threading.

The real datasets consist of mainly 35 synths2 from the
web [1] and five more datasets (Table 1), which are free
to use, because the synths from the web cannot be pub-
lished. All the cameras and the points of synths are recov-
ered by [1]. To obtain a reliable experimental result, we
select the synths whose number of cameras is widely dis-
tributed and is a maximum of 1200. The average number of
projections per point ranges from 3 to 7. We ask the readers
to refer to Table 1 in [12] for detailed information on all the
real datasets. Figure 1 in [12] also shows three views and
the filled-in hessian patterns of five free datasets. Each BA
of real datasets is performed with a single 2.8 GHz core of
a computer cluster.

We classify the tested settings of the bundler into three
groups. The bundler that uses the proposed block-based
solvers is marked as “B ” and the one that uses scalar-based
solvers [7] is marked as “S ”. While S is our own im-
plementation, the conventional bundler marked as “L ” is a
public and widely used implementation of [14]. “LDL” or
“CG” is assigned in the second place, according to the lin-
ear solver. Consequently, six different bundlers are tested.
In addition, we use “P” or “P*” for the cases in which
the proposed EPIs are applied with or without the back-
substitution, respectively. The above notation for describ-
ing our tested algorithms is used in Figures 3-6. In Figure
2, we use a different notation that describes the kind of pre-
conditioning we tried, as described in the next paragraph.

2The term ‘synth’ is used for a set of cameras and points reconstructed
from a set of unordered images by the SfM solution at [1]

(a)

(b)
Figure 2. (a) Time (sec) for CG convergence (sec) versus number
of cameras. For the ‘(A) (B) (C)’ format of legend, (A) the num-
ber of the block bandwidth for block-based preconditioner or type
of scalar preconditioner, (B) block or scalar type, and (C) variable
orderings are coded. (b) The number of CG iteration to converge
for various CG settings. SSOR and block-based preconditioners
require about 3 times fewer iteration for convergence than NONE
and JACOBI.

6.1. Experiments on Synthetic Datasets

Prior to performing experiments that test various set-
tings, including a scalar or a block-based CG linear solver,
it is necessary to fix an appropriate preconditioner for each
CG solver. In order to find the best preconditioner, we in-
vestigate the total time (Fig. 2a) and the number of CG itera-
tions (Fig. 2b) required to achieve convergence over all syn-
thetic datasets. For the ‘(A) (B) (C)’ format used in Fig. 2,
(A) is the block bandwidth for block-based preconditioner
or type of scalar-based preconditioner, (B) is the block or
scalar type, and (C) is the variable re-ordering algorithm
used. According to Fig. 2, “SSOR S” (eqn. 2) is clearly
better than “JACOBI S” (eqn. 1) when the scalar CG is be-
ing used, whereas it is very difficult to decide which one
is the fastest preconditioner among the tested block-based
preconditioners. All block-based preconditioned CGs are
around ten times faster than scalar CGs, and even the sim-
plest one “1 B” (P = H−1

1 , i.e., block-based Jacobi pre-
conditioning), which preconditions the main block diagonal
only, saves more iterations than the scalar SSOR precondi-
tioner. Although the number of CG iterations differs, all
the tested block-based preconditioners show a similar over-
all performance. “1 B” is a good choice for experimental
purposes, since it is independent of orderings and provides
a predictable performance (shows a stably increasing plot in



(a) (b) (c)

(d)
Figure 3. Time (sec) of each step in one iteration for the synthetic
datasets. (a) Block-based(B), (b) Scalar(S), and (c) Conventional
(L) bundlers with LDL(upper) and CG(lower) as linear solver. The
minimum degree ordering is used for B LDL and S LDL.

Fig. 2). Therefore, for all the experiments that we carry out,
“1 B” and “SSOR S” are applied to every block-based and
scalar CG, respectively.

In Fig. 3, it can be observed how the computation times
increase for six different bundlers with an increasing num-
ber of cameras. The partial and total times for one itera-
tion are measured and plotted in order to compare the dis-
tribution of time over four steps: building the RCS, lin-
ear solving, back-substitution, and computing costs. The
top row of Fig. 3 shows that the computation time for
LDL quickly dominates the total time as the number of
cameras increases. The bottom row of Fig. 3 shows that
CG takes considerably less time than LDL. Moreover, the
block-based CG does not dominate the total time. Figure 3d
shows the time for ’total’ of Figures 3a-c, i.e., the top curve,
grouped by the number of cameras, so that the relative per-
formance of different algorithms can be more easily com-
pared. It should be noted that the proposed “B LDL” and
“B CG” are the fastest in each category and “B CG” takes
less than 1 second even with a highly occupied 576 × 576
block(6× 6) matrix.

6.2. Experiments on Real Datasets

In this section, we show that the previously mentioned
results are valid for real datasets and also demonstrate the
effect of EPIs and its variant. In practice, waiting until the
bundler converges completely is unacceptable and requires
too much time for a massive experiment. We therefore stop

the process if the relative cost improvement is lower than
0.01% for every bundler and EPIs. With this criterion, we
compare the elapsed time to reach a specific level of error.
One or two pixel reprojection error is considered a satisfac-
tory level for 640× 480 or 800× 600 imagery in the struc-
ture from motion literature. Since our datasets are obtained
at different image resolutions, we re-scale every image so
that its longer side has an 800-pixel dimension and calcu-
late the RMS reprojection error in pixel. A 1.5 pixel RMS
reprojection error is selected for the comparison on Table 2.

We tested about forty different block-based and scalar
bundler variants with various linear solvers, orderings, pre-
conditionings, EPIs, and lambda control strategies. Ta-
ble 2 shows a set of results for eight representative bundlers.
For several datasets like cliffhouse(39) and korpalace(40),
scalar bundlers are not able to be applied because of the
memory limit, as discussed in Fig. 1. The columns {1, 4,
7, 8} should show an identical number of iteration at each
row (the values in parentheses), if a scalar or block-based
CG computes an ideal solution as LDL does, and so should
the columns {2, 5} and {3, 6}. Nevertheless, the columns
with CG show differences for several datasets, because of
the stopping criterion. Those differences, however, cause
no crucial effect and still provide a faster convergence (Ta-
ble 2 in [12]).

The EPIs, as expected, reduce the iterations very effec-
tively. Allowing one more core-EPI iteration, instead of
the back-substitution (“P*”), increases the computational
speed. We do not explicitly investigate the reason for this
increase, but it is probably due to the different lineariza-
tions where the point updates are computed. As we men-
tioned in Section 5, the cameras are better constrained, and
by nature, they settle down quickly. The core-EPI uses the
linearization computed with the updated cameras, whereas
the back-substitution uses the linearization computed with
the previous cameras. Therefore, we speculate that the pro-
posed EPIs perform better because it makes the points fol-
low the recently updated cameras, which are more reliable
than the points and are placed better than the previous cam-
eras. Considering the fact that the bundlers with EPIs rarely
fail to reach 1.5 pixel error, EPIs are helpful not only for
saving iterations, but also for achieving better convergence.

Figure 4 visualizes the entire version of Table 2.
The lower is the better, and lines of “B CG P*” and
“B LDL P*” are obviously two lowest ones. The actual
gaps between the plotted lines are substantial (the ‘z’ axis
for time is in a logarithmic scale).

The overall performance differs significantly between
the scalar and the proposed approaches, and “B CG P*” fi-
nally shows the best result over all datasets in terms of time,
iteration, and convergence.

Times for one iteration of the five publishable datasets
are also compared in Figure 5a, as in Figure 3d on the



set
Block-based LDL (B LDL) Block-based CG (B CG) S LDL S CG

BS only P P* BS only P P* BS BS
9 6.64 (22.9) 0.91 (2.0) 0.44 (1.0) 5.92 (22.9) 1.64 (4.3) 0.45 (1.0) 8.75 (22.9) 7.35 (22.9)

26 N/A 17.61 (10.9) 6.58 (5.0) N/A 14.04 (10.9) 5.07 (5.0) N/A N/A
29 N/A 4.81 (2.0) 2.53 (0.9) N/A 10.54 (4.7) 2.53 (0.9) N/A N/A
39 364.46 (70.3) 85.05 (13.6) 6.27 (1.0) 186.1 (70.3) 49.39 (13.6) 4.53 (1.0) N/T N/T
40 N/A N/A 196.0 (2.9) N/A N/A 26.9 (5.2) N/T N/T

Table 2. Elapsed time and number of iteration (in parentheses) for reducing RMS reprojection error to 1.5 pixel. Bold font indicates the
minimum time for each row, and N/A stands for the case that 1.5 pixel error is not achieved under the stopping criteria. N/T means ‘not
tested’. The entire table is available in [12].

Figure 4. Time to reach 1.5 pixel RMS reprojection error. The plot-
ted lines meet “STOPPED BEFORE 1.5” when the corresponding
setting of bundler stopped before reaching 1.5 pixel error for the
datasets or was not tested.

(a) (b)
Figure 5. Time (sec) for (a) one bundle iteration and (b) one linear
solving on the publishable datasets. As explained, the scalar solver
is not able to be performed on two datasets on the right.

synthetic datasets. Besides the reduced number of itera-
tions, EPIs show cheap cost and our block-based bundlers
(both direct LDL and iterative CG) are faster than the scalar
ones, even with EPIs. Two main factors, the number of
cameras and the sparsity of the Hessian of RCS, are rele-

Figure 6. Time to reach 1.5 pixel RMS reprojection er-
ror for different ordering methods. The plotted lines meet
‘STOPPED BEFORE 1.5’ when the corresponding setting of
bundler stopped before reaching 1.5 pixel error for the datasets
or was not tested.

vant. While the former affects the complexity of the en-
tire bundle process, the latter mainly affects the linear solv-
ing. Therefore, the gap between the scalar bundlers and
the block-based bundlers becomes larger as the number of
cameras increases, and the dense Hessian widens the gap
between LDL and CG. A direct comparison on the time
for linear solving in Fig. 5b may help the reader to under-
stand the effect. The korpalace and cliffhouse have similar
complexity, but the korpalace has the denser Hessian than
the cliffhouse (refer to Table 1 and Fig. 1 in [12]). The
korpalace causes much larger gap between “B LDL” and
“B CG” than the cliffhouse in Fig. 5. This means that the
proposed block-based preconditioned CG gets more crucial
when problems get bigger and denser.

Finally, we demonstrate that the exact minimum degree
ordering becomes faster than the approximate one (REV)
as BLAS3 becomes available. The comparison is depicted
in Fig. 6 and is focused on variable ordering methods. It
should be noted that the four bundlers that are compared fol-
low one common convergence path and only differ in time
because the ordering does not affect the result of LDL solv-
ing. Therefore, their plotted lines move together. Because
of the increasing complexity, the absolute gap between lines
widens for the latter datasets. The block-based LDL with
the exact minimum degree ordering (MD) is clearly better



than the one with reverse Cuthill-McKee ordering (REV)
and is the fastest one.

7. Conclusion and Future Work
This paper provides three main contributions−adapting

the block structure to deal with fixed and tied variables, the
resulting block-based linear solvers, and the novel EPIs.
A carefully-managed block structure can maintain the de-
sired homogeneity and allow the use of BLAS3 and effi-
cient memory handling. It also supports fast reordering and
customized sparse linear solving such as the block-based
preconditioned CG, the effectiveness and the stability of
which are proven by our experiments. At the same time, the
EPIs successfully sync the points to the camera updates so
that the entire bundle iterations are not wasted. Finally, the
bundlers that simultaneously utilize all the proposed contri-
butions outperform the previous bundlers tested in the ex-
periments. The block-based preconditioned CG with EPIs,
which is the best bundler, achieves a substantial improve-
ment. Moreover the proposed bundler can be used in con-
cert with other approaches that modify how and when the
bundler is invoked.

There are several issues that need to be addressed in a fu-
ture study. The effect of the λ control strategy has not been
fully investigated. A comparison between the suggestion
given in [15] and LMs with various strategies is also inter-
esting. Another task is parallelizing the proposed method.
All our sub-steps except for linear solving can be computed
in parallel in a straightforward manner, with exception of
linear solving. However, it is easy to parallelize CG and
the block Jacobi preconditioner. Once parallelization has
been implemented, the computational speed should further
be improved.

References
[1] Photosynth. http://photosynth.net. 3, 5
[2] S. Agarwal, N. Snavely, I. Simon, S. M. Seitz, and

R. Szeliski. Building rome in a day. In IEEE International
Conference on Computer Vision (ICCV), 2009. 1, 2, 3

[3] M. J. Black and A. Rangarajan. The outlier process: Uni-
fying line processes and robust statistics. In Computer Vi-
sion and Pattern Recognition, IEEE Computer Society Con-
ference on, 1994. 4

[4] M. Byrod and K. Astrom. Bundle adjustment using conju-
gate gradients with multiscale preconditiong. In British Ma-
chine Vision Conference, 2009. 1, 2

[5] T. Davis. Direct Methods for Sparse Linear Systems. SIAM,
Philadelphia, 2006. 3

[6] F. Dellaert and M. Kaess. Square root sam: Simultaneous lo-
cation and mapping via square root information smoothing.
International Journal of Robotics Research, 2006. 2, 3

[7] C. Engels, H. Stewénius, and D. Nistér. Bundle adjustment
rules. In Photogrammetric Computer Vision (PCV). ISPRS,
Sept. 2006. 2, 3, 5

[8] A. Eudes and M. Lhuillier. Error propagations for local bun-
dle adjustment. In Computer Vision and Pattern Recognition,
IEEE Computer Society Conference on, 2009. 2

[9] G. Golub and C. V. Loan. Matrix Computations. Johns Hop-
kins Studies in Mathematical Sciences, 3rd edition edition,
1996. 3

[10] R. I. Hartley and A. Zisserman. Multiple View Geometry
in Computer Vision. Cambridge University Press, ISBN:
0521540518, second edition, 2004. 2

[11] S. Holmes, G. Sibely, G. Klein, and D. W. Murray. A rel-
ative frame representation for fixed-time bundle adjustment
in sfm. In IEEE International Conference on Robotics and
Automation, 2009. 2

[12] Y. Jeong, D. Nister, D. Steedly, R. Szeliski, and I.-S. Kweon.
Supplementary material. 0486 supp.pdf. 5, 6, 7

[13] K. Levenberg. A method for the solution of certain non-
linear problems in least squares. The Quarterly of Applied
Mathematics, 2:164–168, 1944. 1, 2

[14] M. Lourakis and A. Argyros. The design and implementa-
tion of a generic sparse bundle adjustment software package
based on the levenberg-marquardt algorithm. Technical Re-
port 340, Institute of Computer Science - FORTH, Herak-
lion, Crete, Greece, Aug. 2004. 1, 2, 5

[15] M. Lourakis and A. Argyros. Is levenberg-marquardt the
most efficient optimization algorithm for implementing bun-
dle adjustment? In IEEE International Conference on Com-
puter Vision (ICCV), pages 1526–1531, 2005. 1, 8

[16] E. Mouragnon, M. Lhuillier, M. Dhome, F. Dekeyser, and
P. Sayd. Real time localization and 3d reconstruction. In
Computer Vision and Pattern Recognition, IEEE Computer
Society Conference on, pages 363–370, 2006. 2

[17] K. Ni, D. Steedly, and F. Dellaert. Out-of-core bundle adjust-
ment for large-scale 3d reconstruction. In IEEE International
Conference on Computer Vision (ICCV), 2007. 1, 2

[18] H.-Y. Shum, Z. Zhang, and Q. Ke. Efficient bundle adjust-
ment with virtual key frames: A hierarchical approach to
multi-frame structure from motion. In Computer Vision and
Pattern Recognition, IEEE Computer Society Conference on,
pages 2538–2543, 1999. 2

[19] N. Snavely, S. Seitz, and R. Szeliski. Photo tourism: explor-
ing photo collections in 3d. ACM Trans. Graph., 25(3):835–
846, 2006. 3

[20] D. Steedly and I. A. Essa. Propagation of innovative infor-
mation in non-linear least-squares structure from moion. In
IEEE International Conference on Computer Vision (ICCV),
pages 223–229, 2001. 2

[21] D. Steedly, I. A. Essa, and F. Dellaert. Spectral partitioning
for structure from motion. In IEEE International Conference
on Computer Vision (ICCV), pages 996–1003, 2003. 2

[22] B. Triggs, P. McLauchlan, R. Hartley, and A. Fitzgibbon.
Bundle adjustment – a modern synthesis. In B. Triggs,
A. Zisserman, and R. Szeliski, editors, Vision Algorithms:
Theory and Practice, volume 1883 of Lecture Notes in Com-
puter Science, pages 298–372. Springer-Verlag, 2000. 1, 2,
3, 4


	. Introduction
	. Bundle Adjustment
	. The Reduced Camera System

	. Block Structure
	. Solving Reduced Camera System
	. Variable Ordering
	. Preconditioned Conjugate Gradient

	. Embedded Point Iterations
	. Experimental Results
	. Experiments on Synthetic Datasets
	. Experiments on Real Datasets

	. Conclusion and Future Work

